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Abstract
Introduction: Brain-Computer Interface (BCI) offers a non-muscle way between the human 
brain and the outside world to make a better life for disabled people. In BCI applications 
P300 signal has an effective role; therefore, distinguishing P300 and non-P300 components 
in EEG signal (i.e. P300 detection) becomes a vital problem in BCI applications. Recently, 
Convolutional Neural Networks (CNNs) have had a significant application in detection of 
P300 signals in the field of BCIs. The P300 signal has low Signal to Noise Ratio (SNR). On 
the other hand, the CNN detection rate is so sensitive to SNR; therefore, CNN detection rate 
drops dramatically when it is faces with P300 data. In this study, a novel structure is proposed 
to improve the performance of CNN in P300 signal detection by means of improving its 
performance against low SNR signals.
Methods: In the proposed structure, Sparse Representation-based Classification (SRC) was 
used as the first substructure. This block is responsible for prediction of the expected P300 
signal among artifacts and noise. The second substructure performed P300 classification with 
Adadelta algorithm. Thanks to such SNR improvement scheme; the proposed structure is 
able to increase the rate of accuracy in the field of P300 signal detection.
Results: To evaluate the performance of the proposed structure, we applied it on EPFL 
dataset for P300 detection, and then the achieved results were compared with those obtained 
from the basic CNN structure. The comparisons revealed the superiority of the proposed 
structure against its alternative, so that its True Positive Rate (TPR) was promoted about 
19.66%. Such improvements for false detections and accuracy parameters were 1.93% and 
10.46%, respectively, which show the effectiveness of applying the proposed structure in 
detecting P300 signals.
Conclusion: The better accuracy of the proposed algorithm compared to basic CNN, in 
parallel with its more robustness, showed that the Sparse Representation-based Classification 
(SRC) had a considerable potential to be used as an improving idea in CNN-based P300 
detection.
Keywords: EEG, Neural Networks, Signal Detection, Machine Learning, Brain-Computer 
Interfaces, Brain-Computer Interface, Brain, Neuroscience, P300, Convolutional Neural 
Networks, Deep Learning
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Introduction

Brain Computer Interface (BCI) is a 
communication system that allows the brain to 
control devices without any peripheral muscle 

activity (1, 2). The BCIs have been traditionally 
developed to assist people who are unable to move 
despite retaining their cognitive abilities; also, they 
are used to improve the quality of life and reduce the 
social costs (1, 3) 

Event Related Potentials (ERPs) are evoked 
brain responses synchronized to sensory, cognitive 
and motor events which are widely used in BCI 
applications. Therefore, they consist of relatively 

reproducible wave shapes embedded in the 
background of Electroencephalogram (EEG) activity. 
Generally, P300 signal has a positive peak that is 
evoked almost 300 ms after the first stimulus (4, 5).

An oddball paradigm is a common way to excite 
the subjects under test for obtaining their P300 
signals. It is a square matrix containing alphabetic, 
numeric and under line symbols. These symbols are 
randomly intensified in a special row and column of 
certain and predefined word’s characters which were 
displayed continually to the subjects for evoked P300 
potential (6). 

Unfortunately, the P300 signal has low Signal to 
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Noise Ratio (SNR) which hampers its application in 
many of BCI systems. For several years, averaging 
has been used to improve the SNR, but this method 
has deformed the P300 signal because of the decrease 
in its bit rate (4, 7). Nowadays, artificial intelligence 
techniques have been applied to increase the SNR 
without loss of any significant information of the 
P300 signal (8). 

Artificial intelligence methods in the field of 
P300 signal detection include linear and nonlinear 
methods (4, 8). The linear techniques have simple 
structures to understand and use, but they are not 
strong enough to deal with real-complex problems. 
On the other hand, the non-linear techniques are 
powerful to face with complex problems in the real 
world, but their main weakness is over-fitting (9).

In recent years, neural networks have had a wide 
development in the BCI applications also in the field 
of P300 detection (10). The main drawback of this 
approach is the need to additional preprocessing 
step as feature extraction because neural networks 
mainly require appropriate features as its input data 
(11). To address this problem, numerous researchers 
have been applied in field of Deep Neural Networks 
(DNN) for P300 signal detection (2). DNNs are a 
typical type of neural networks which use the signal 
directly as their input data to extract the features 
automatically (11). Moreover, they have a deep 
dimension with multilevel representation of data (12), 
which enables the model to express more complicated 
neurobiological problems.

Convolutional Neural Network (CNN) is a 
class of DDNs which has been widely used in P300 
signal detection and classification (13, 14). In some 
applications, CNN was used in order to enhance the 
performance of P300 classification and detection and 
preserve spatio-temporal features of the EEG signal 
(12, 15). Unfortunately, the CNN detection rate 
drops dramatically when they are faced with noise 
and artifact in the input data (16). In this study, a 
new structure is introduced to improve the detection 
rate of the P300 signal among additional noise (i.e. 
artifacts) by using CNN. The proposed structure 
includes two substructures; the first one is responsible 
for predicting the expected P300 signal among the 
artifacts and the second substructure performs P300 
classification with Adadelta algorithm. The aim of the 
proposed structure is to improve the SNR in BCIs, so 
it is able to increase the rate of accuracy in the field of 
P300 signal detection.

In the next part the principles of the proposed 
method are described, the real data is tested, and 
finally the results obtained from the proposed method 

and its alternative schemes are compared.

Methods
The EEG data of the EPFL dataset include eight 
normal and disabled subjects. The data were obtained 
using Biosemi system with 32 channels in 2048 HZ. 
The electrodes were located based on 10-20 system 
positioning standard. The EEG data of each subject 
consisted of four sessions and the data of each session 
was composed of six runs which corresponded to 
six images. The images were displayed in the laptop 
screen to evoke the related potential and they were 
based on random order for 100 ms; during 300  
none of them was depicted.  More details about the 
EPFL dataset can be found in (17).

In machine learning, a CNN is a type of deep, 
feed forward artificial neural networks which use a 
variety of multilayer perceptrons designed to require 
minimal preprocessing (18). This type of neural 
networks is also known as shift invariant or space 
invariant artificial neural network (SIANN), based 
on their shared-weights architecture and translation 
invariance characteristics (19, 20).

CNNs were inspired by biological processes (21) 
in that the connectivity pattern between the neurons 
resembles the organization of the animal visual 
cortex. 

The receptive field of an individual sensory neuron 
is the particular region of the sensory space (e.g. the 
body surface, or the visual field) in which a stimulus 
will modify the firing of that neuron. . The main 
CNN layers which make its body are: convolutional 
layer, pooling layer and fully connected layer. 

The convolutional layer is the core building block 
of a CNN that does most of the computational heavy 
lifting. The convolutional layer’s parameters consist of 
a set of learnable filters. Every filter is small spatially 
(along width and height), but it extends through the 
full depth of the input volume. .During the forward 
pass, each filter slips across the input volume and dot 
products are computed between the entries of the 
filter and the input.

As the filter slides over the width and height of 
the input volume, an activation map that gives the 
responses of that filter at every spatial position is 
produced (22).

In general, the task of the pooling layer is 
to progressively reduce the spatial size of the 
representation, in order  to reduce the computational 
cost in the network which leads to control of the 
over-fitting.  . There are two types of pooling, average 
and max. In practice, the max pooling led to better 
convergence during training process. The neurons 
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in a fully connected layer have full connections to all 
activations in the previous layer, as seen in regular 
neural networks. Their activations may, hence, be 
computed with a matrix multiplication followed by 
a bias offset (22). 

Sparse Representation-based Classification
The EEG signal is often captured with low SNR 

which is challenging in neurology problems. Hence, 
the P300 signal detection problem still faces an 
important issue regarding the low SNR. In practice, 
when the input data of CNN is mixed with artifacts, 
its recognition rate is dramatically reduced. To 
address this problem, a novel method based on 
Sparse Representation-based Classification (SRC) 
is proposed as a SNR improving approach which 
extracts the features which are independent from 
noise and improve the P300 signal detection.

In SRC, the training set may be supposed as a 
dictionary, dic=[dicP300, dicnonP300], where dicP300 and 
dicnonP300 are sub-dictionaries which correspond to 
P300 and non-P300 signals in the training set. A new 
signal sample with low SNR  may be defined with a 
linear combination of some columns in dic as (23):

  (1)

Where the coefficient vectors [CP300    CnonP300] are 
faced with sparsity by different sparsity constraints. 
The identity of  may be rewrite as below (24):

 

      (2)
In equation (2), 

find the class which contributes more to the 
reconstruction of the input signal .

A new sample may be generated using randomly 
selecting a signal sample from [dicP300, dicnonP300], as  
and additional noise as n:

     (3)
In Figure 1, the input of the proposed structure 

is S+n which refers to a combination of  as the 
expected signal captured at ideal condition and  is a 
representation of the artifact or noise. 

The first part of the proposed structure is a 
substructure aiming to learn a mapping function 

 to predict the expected signal  from noisy 
signal . Moreover, the averaged mean squared error 
between these signals is forced to be small, which is 
defined as the following equation:

 (4)

Where M is the total number of training signals, 

 and . Then, 
the predicted expected signal  is fed to the first 
convolutional layer as the first layer of the second 
sub-structure. Discrete convolution between signal  
and the filter Filtis computed as (25):

    (5)

Where θ refers to model weights. 

Optimizer Algorithm
Here, Adadelta is used as training algorithm. It 

restricts the window of accumulated past gradients 
to some fixed size w, instead of inefficiently storing 

 previous squared gradients. The sum of gradients 
is recursively defined as a decaying average of all the 
previously squared gradients. The running average 

 at time step  then depends (as a fraction 
Υ similarly on the momentum term and  is the 
gradient of θ) only on the previous average and the 
current gradient (26):

  (6)

To rewrite the Adadelta update, we used the 
parameter update vector  in equations (7), in 
which  is the learning rate:

  
    (7)

The parameter update vector of Adagrad takes the 
form:

    (8)

Where, ε is the value that prevents the division 
error from zero, and Gt refers to the sum of the squares 
of previous gradients. Now, simply the diagonal 
matrix Gt is replaced with the decaying average over 
the previously squared gradients  as described 
in equation (9):

    (9)

As the denominator is just the root mean squared 
(RMS) error criterion of the gradient, a short hand 
form is replaced with it:

    (10)

So, the equation (6) may be rewritten as follows 
(26):

  (11)

The root mean squared error of parameter updates 
is thus:

   (12)
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Since  is unknown, it is approximated 
with the RMS of parameter updates until the previous 
time step. Replacing the learning rate  in the previous 
update rule with  finally yields the 
following equation:

  
    (13)

As illustrated in Figure 1, in the proposed 
structure, corrupted P300 signals (i.e. with artifact) 
are given as input; then, the first sub-structure predicts 
the expected version of signal. The first part of the 
proposed structure is composed of two convolutional 
layers and one Rectified Linear Unit (ReLU) as 
activation function between them. The output of 
this sub- structure is fed to the next sub-structure 
to be classified. The second structure is composed 
of three convolutional layers, two max pooling 
layers, one ReLU, one SoftMax (SM) layer and finally 
Fully Connected (FC) layer which is responsible for 

computing the score of each class and putting the 
signal in the class with high score. Further details 
about the specification of the proposed structure can 
be found in Table 1.

Results
As described in section 2 the proposed structure 
was applied on EPFL dataset which had been 
captured from eight available subjects using 32 
electrodes. It was implemented by MATLAB R2017a, 
on a laptop with an Intel Core i7 processor and 2 TB 
RAM. Four sessions are the whole-body data of each 
subject in the EPFL dataset. In each session, there are 
six runs and each run corresponds to each of the six 
images, which are displayed for subjects to stimulate 
the P300 signal.

To measure the performance of the proposed 
structure, we used the data of the two sessions as 
the training set. The data of another session are 
used for validation; thus, the data of leave off session 
was used as the test set. Four-fold-cross-validation 

Table 1: The spacification of the proposed structure
Layer Kernel Stride Pad Neuron
Convolution 5x5 1 1 20
ReLU - - - -
Convolution 5x5 1 1 20
Max Pooling 2x2 2 0 20
Convolution 5x5 1 0 50
Max Pooling 2x2 2 0 50
Convolution 4x4 1 0 500
ReLU - - - -
Convolution 2x2 1 0 2

Figure 1: The proposed structure for P300 signal detection which is composed of two sub structures. The first structure is responsible 
for predicting the expected signal and the second structure does the classification of the predicted signal into two class P300 and 
non-P300.
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method was used to evaluate how good the proposed 
structure works against its alternatives (i.e. basic 
structure which is trained using Adadelta, Adam and 
RMSprop).  This process was repeated four times, so 
each session was presented once for test. Finally, the 
averaged values of the results were estimated based 
on evaluation parameters.

The evaluation parameters consisted of True 
Positive Rate (TPR), True Negative Rate (TNR), 
False Positive Rate (FPR), False Negative Rate (FNR), 
classification accuracy and recall (2), which were 
employed to estimate the performance of the proposed 
structure and its state-of-the-art alternatives. 
As shown in Table 2, the proposed structure 
outperformed all of the examined parameters in all 
subjects, against its alternatives as described below:

The obtained TPRs revealed that the best value 
gained by using the proposed structure has been equal 
to 98.51% in subject 6, while the best TPRs obtained 

by applying the alternatives (i.e. basic structure which 
is trained using Adadelta, Adam and RMSprop 
algorithms) over EPFL dataset were equal to 78.85%, 
83.19% and 80.55% over subject 7, respectively.

According to FPRs and FNRs, the proposed 
structure achieved the best values equal to 0.21% 
(in subjects 2 and 7 for FPR) and 1.48% (in subject 
6 for FNR). The best obtained FPRs for alternatives 
were equal to 2.14%, 2.58% and 2.31%, respectively. 
Moreover, the best FNRs of the alternatives were 
equal to 21.1%, 16.8% and 19.44%, respectively.

Exploring the TNRs showed that the best value 
obtained by the proposed structure (i.e. 99.78% in 
subjects 2 and 7) was better than all the alternatives 
(i.e. 97.85% in subject 3 for basic structure trained 
with Adadelta, 97.41% in subject 4 for basic structure 
trained with Adam, and 97.68% in subject 2 for basic 
structure trained with RMSprop). 

Similarly, the recalls showed that the best value 

Table 2: The average of evaluation parameters in each subject
Type Subject TPR FPR TNR FNR Recall Accuracy
Basic Structure
Trained on
Adadelta

1 70.74 8.86 91.13 29.25 70.74 80.93
2 67.45 5.35 94.64 32.54 67.45 81.05
3 77.18 2.14 97.85 22.81 77.18 87.51
4 68.39 3.24 96.75 31.60 68.39 82.57
5 76 5.14 94.85 23.99 76 83.41
6 72.61 3.22 96.77 27.38 72.61 84.69
7 78.85 2.23 97.77 21.14 78.85 88.31
8 61.79 2.75 97.24 38.20 61.79 79.52

Basic Structure Trained 
on Adam

1 63.67 3.28 96.71 36.32 63.67 80.19
2 65.84 4.93 95.06 34.15 65.84 80.45
3 73.51 5.15 94.84 26.48 73.51 84.18
4 72.31 2.58 97.41 27.68 72.31 84.86
5 70.96 6.87 93.12 29.03 70.96 82.04
6 72.11 3.51 96.48 27.88 72.11 84.30
7 83.19 3.96 96.03 16.80 83.19 89.61
8 75.42 17.06 82.93 24.57 75.42 79.17

Basic Structure Trained 
on RMSprop

1 57.80 2.72 97.27 42.19 57.8 77.53
2 55.59 2.31 97.68 44.40 55.59 76.64
3 79.19 5.93 94.06 20.80 79.19 86.62
4 72.38 2.90 97.09 27.61 72.38 84.74
5 70.28 6.22 93.77 29.71 70.28 82.02
6 75.64 3.03 96.96 24.35 75.64 86.30
7 80.55 2.98 97.01 19.44 80.55 88.78
8 63.03 4.29 95.70 36.96 63.03 79.36

Proposed Structure 1 92.40 1.87 98.12 7.59 92.4 95.26
2 95.12 0.21 99.78 4.88 95.12 97.45
3 91.42 2.76 97.23 8.58 91.42 94.32
4 97.55 0.40 99.59 2.44 97.55 98.57
5 85.66 2.47 97.52 14.34 85.66 91.59
6 98.51 0.51 99.42 1.48 98.51 98.97
7 97.75 0.21 99.78 2.24 97.75 98.77
8 93.29 2.29 97.74 6.70 93.29 95.51
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of the proposed structure occurred in subject 6 
which was 98.51%; this result shows the superiority 
of the proposed structure against the best results 
of its alternatives (i.e. 78.85% in subject 7 for basic 
structure trained with Adadelta, 83.19% in subject 7 
for basic structure trained with Adam, and 80.55% in 
subject 7 for basic structure trained with RMSprop).

Eventually, the best classification accuracy of the 
proposed structure confirmed its better performance 
(i.e. 98.97% in subject 7) against the alternatives (i.e. 
88.31% for basic structure trained by Adadelta, 89.61% 
for basic structure trained by Adam, and 88.78% for 
basic structure trained by RMSprop, all the values 
were obtained in subject 7).

The EPFL dataset contains EEG raw data for eight 
available subjects. Each subject was composed of four 
sessions. Therefore, the four-fold-cross-validation 
method was applied to use each of four data sessions 
in test. As depicted in Figures 2, 3 and 4, the averaged 
data of each subject were evaluated over all of the 
four sessions. Hence, the results describe how good 
each subject has recognized the P300 signal over 
all sessions based on the examined parameters (i.e. 
accuracy, TPR and FP

Among alternatives which had been in contrast 
with the proposed structure in Table 2, the basic 
structure with Adadelta training algorithm was the 
best. Hence, in rest of this section was distinguished 
as the unique alternative. As shown in Figure 2, the 

range of accuracy variations across eight subjects 
according the proposed structure was considerably 
lower than its alternative. 

In subject 1, the obtained variation ranges of the 
examined parameter (i.e. accuracy) for the proposed 
and basic structures were equal to 4.71% and 7.43%, 
respectively. These values showed that variations in 
the accuracy of the proposed structure were 2.72% 

Figure 2: The results of application of the basic and the proposed 
structures on EPFL dataset for CNN based on accuracy across 
eight subjects

Figure 3: The results of application of the basic and the proposed 
structures on EPFL dataset for CNN based on True Positive Rate 
(TPR) across eight subjects

Figure 4: The results of application of the basic and proposed 
structures on EPFL dataset for CNN based on False Positive Rate 
(FPR) across eight subjects
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more compact than the alternative structure during 
several runs. In subject 2, the proposed and alternative 
structures reached the range variations of 3.56% and 
5.62% based on their accuracy. The obtained results 
showed that the proposed structure was 2.06% more 
stable than its alternative.

Similarly, the obtained ranges of accuracy using the 
proposed and alternative structures in subject 3 were 
equal to 2.51% and 3.23%, respectively. These results 
illustrated that the proposed structure had almost 
equal variations with the alternative structure in this 
subject. The variation ranges of accuracy in subject 
4 were equal to 3.53% for the proposed structure 
and 4.31% for the alternative structure, which are 
somewhat similar to those of the previous subject. 

In subject 5, the variation ranges for the proposed 
and alternative structures were 4.99% and 8.1%, 
respectively, showing considerable stability in the 
proposed structure compared to the basic structure. 
The obtained variation ranges in subject 6 were equal 
to 19.93% for the proposed structure and 9.8% for the 
alternative structure, again confirming the above fact. 

In a similar manner, the variation ranges of the 
accuracy for the proposed and alternative structures 
in subject 7 were 3.17% and 4.81%, respectively; 
in subject 8 they were equal to 4.3% and 2.9%, 
respectively. In Figures 3 and 4, the stability of the 
proposed and basic structures was explored from 
another point of view. In these Figures, the range 
of variations in TPR and FPR obtained across all 
subjects was investigated. 

In subject 1, the TPR variation range was equal to 
8.8% for the proposed structure, whereas the variation 
range for its alternative was 14.53 %. However, the 
distance variation ranges of FPR showed that the 
proposed structure was almost as stable as the basic 
structure, as shown in Figure 4.

In subject 2, the obtained variation ranges of TPR 
for the proposed and alternative structures were equal 
to 7.11% and 10.89%, respectively. These values were 
0.87% and 2.81% for their FPRs which revealed that 
based on both TPR and FPR the proposed structure 
was more stable than the basic structure. A glance on 
subject 3 showed that the variation ranges of TPRs in 
the proposed and alternative structures were 4.31% 
and 6.53%. On the other hand, the variation ranges 
of FPRs for the proposed structure were almost equal 
to the alternative structure. Likewise, the variation 
ranges of TPRs in subject 4 were equal to 6.85% for 
the proposed structure and 7.36% for the alternative 
structure. In addition, the variation ranges of FPR in 
this subject illustrated that the proposed structure, 
as compared to the alternative structure, was 1.94% 

more stable.
In subject 5, the variation ranges of TPR for the 

proposed and alternative structures were 9% and 
16.1%, respectively. Moreover, the variation ranges 
of FPR indicated that the proposed structure was 
as stable as the alternative one. Therefore, the more 
excellent stability of the proposed structure in TPR 
had not caused instability in FPR. 

Similarly, the obtained variation ranges of TPR 
by subject 6 were equal to 3.57% for the proposed 
structure and 17.85% for the alternative structure, 
whereas the FPR of the proposed structure was 1.84% 
more stable than the alternative one.

The variation ranges of TPR in subject 7 were 
6.82% for the proposed structure and 8.68% for the 
alternative structure. Furthermore, in subject 8 these 
values were equal to 6.24% for the proposed structure 
and 8.99% for the alternative structure. Also, the 
variation ranges of FPR for the proposed structure in 
subjects 7 was almost equal to that of the alternative 
structure. Similarly, in subject 8, the variation ranges 
of FPR for the proposed structure was almost equal to 
that of the alternative structure. Therefore, the more 
considerable stability of the TPR obtained by the 
proposed structure in these subjects had not caused 
instability in FPR. 

The first four subjects were disabled and the 
next four were healthy persons. As displayed in 
Table 2, by applying the proposed algorithm some 
healthy subjects (for example subjects 6 and 7 
with 98.97% and 98.77% accuracies, respectively) 
obtained better results than disabled ones. In the 
same manner, application of the proposed algorithm 
led to better results for some disabled persons (for 
example in subjects 2 and 4 with 97.45% and 98.57% 
classifications accuracy, respectively). Therefore, it 
may be concluded that the results are not relevant to 
the health condition of subjects.

Discussion
The BCI systems are composed of three main parts 
including data acquisition, preprocessing and 
classification. We developed the proposed method 
to improve the performance of the third part, based 
on sparse representation-based classification that 
extracted features which had less dependency on 
artifacts and noise. This idea led to higher detection 
rate in P300 signal relying on the so-called more clear 
features of the P300 signal.

The literature review showed that the proposed 
method had better performance than previous 
schemes. This is consistent with the results of some 
other studies (27), (28),(29). Two major disadvantages 
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of previous models are choosing appropriate features 
and tuning hyperparameters of the model (i.e. 
preparing sufficient generalization performance). The 
linear methods utilize appropriate lines as borders 
between classes to solve the problem; therefore, they 
are not robust against even little changes in data 
(27). On the other hand, neural networks are able to 
solve the problem by utilizing a set of hyperplanes. 
Unfortunately, the classic neural networks (for 
example, Multilayer Perceptrons) may not guarantee 
that their stopping minima is optima; therefore, 
they get stuck in a local minimum. One option for 
mitigating this phenomenon is to train these neural 
networks several times and each time by using 
different random starting position. Finally, the neural 
network that results 9in the best RMS error is selected 
(28). The number of random training iterations is 
one of the challenging issues in the above methods. 
Although some methods such as Random Training 
Iterations (RTI) might be used to set the number of 
iterations, this technique dramatically increases the 
total training time. Another limitation of the above 
algorithm is setting the number of hidden neurons. 
Selecting too low values for this parameter may result 
in underfitting for the neural network, while setting 
this value too high may result in overfitting (29).

The proper features and detection method 
affect the accuracy of the BCI reaction. Overall, 
the proposed method was very well accepted and 
gained high superiority against all the alternatives. 
For example, the accuracy of the proposed method 
was in the range of 6- 11%] better than those which 
had been obtained by well-known methods such as 
Linear Discriminant Analysis (LDA), Support Vector 
Machine (SVM) and classic Neural Networks.

Limitations
One of the limitations of this study was the nature 

and properties of the EEG signals. This signal has poor 
spatial resolution and high sensitivity to a particular 
set of post-synaptic potentials, those generated in 
superficial layers of the cortex, on the crests of gyri 
directly abutting the skull and radial to the skull. 
Dendrites, which are deeper in the cortex, have far 
less contribution to the EEG signal.

Furthermore, in EEG recordings the axonal 
action potentials are not directly captured. An action 
potential may be accurately represented as a current 
quadrupole, meaning that the resulting field decreases 
more rapidly than the ones produced by the current 
dipole of post-synaptic potentials. These facts lead to 
low SNR of the recorded signals which is the most 
common problem to detect the P300 signal in BCI 

systems. Another cumbersome problem is selecting 
the reference electrode. In P300-based BCI, the most 
common referenced electrode is the electrode which 
is located on mastoid. Positioning of the electrode in 
this situation enables it to record a reflection of other 
brain activities in the rest of electrodes. Therefore, the 
recorded signal by this electrode may be utilized as a 
reference for reducing artifacts. 

Another important issue is the method of 
application of the data in training and test of the 
deep neural structure. The four-fold cross-validation 
strategy was used in this research to evaluate the 
average examined parameters based on the fact that 
the data were recorded in four sessions. This process 
may be generalized to more folds if data gathering 
scenario contains more sessions. Finally, the dynamic 
range of the recorded signal may be seriously 
problematic in the neural network training and 
testing processes. We made an attempt to overcome 
this problem by using the normalization technique. 

Advices 
For the use of EEG for BCI applications, it is 

necessary to capture signals in a special scale and 
scheduling. In this study, the subjects were selected 
equally from the healthy and disabled persons. 
Furthermore, during the capture, a resting time was 
proposed to make them more centralized. Another 
important tip is related to different efficiencies for 
different recording channels. Actually, the recordings 
of electrodes are seriously different because some 
regions of the brain make the P300 signal more 
suitable than others. Therefore, it may be concluded 
that rejecting those electrodes which carry weaker 
(i.e. less informative) P300 signals is so effective in 
improving the efficiency of BCI application. On this 
basis, it is recommended that the process of selecting 
the best (i.e. optimum) electrodes should be added 
to the P300 detection process. It seems that such a 
strategy may improve the accuracy of the system 
parallel with the reduction of the number of channels 
which lead to faster process. Development of such 
a strategy is recommended to be investigated in 
future. Last but not the least, initial investigations 
on bitrate parameter revealed that this parameter 
showed a meaningful difference between the normal 
and disabled persons. In future works, we suggest 
that healthy and unhealthy subjects should be 
distinguished based on the measured bitrates which 
are obtained from their EEG signals. 

Conclusion
In this study, a novel structure was introduced 
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to increase the ability of deep neural networks in 
distinguishing P300 and non-P300 signals. The 
proposed structure consists of two connected 
substructures; the first one was responsible for 
predicting the expected signal among signals 
combined with artifact and the second substructure 
got the predicted P300 signal to tag it as P300 or 
non-P300 signal.

To evaluate the proposed structure, we compared 
it with the basic structure which had been trained 
by Adadelta, Adam and RMSprop based on their 
classification accuracy. The obtained results 
illustrated that the proposed structure was achieved 
to the accuracy maximally10.46% better than the 
basic structure.

On the other hand, it was investigated that the 
performance of the proposed scheme is more robust 
than the basic structure. The classification accuracies 
which were obtained with the proposed structure 
based on different subjects showed a maximum 
variation of 6.68%, while that value which had been 
obtained by the basic structure was 9.8%. Based on 
the above analyses, it may be concluded that the 
proposed structure has a considerable potential to be 
used as P300 detection model in BCI applications.

Conflict of Interest: None declared.
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