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Abstract
Introduction: In this study, we analyze the optimal intervention strategies that lead to 
reducing the effects of the COVID-19 pandemic by artificial neural networks (ANNs). Our 
aim is to investigate the effects of optimal control strategies, such as the implementation of 
government intervention, testing, and vaccination policies during outbreaks. 
Methods: We utilized a controlled SIDAREV model to study the progression of the COVID-19 
pandemic. Using Pontryagin’s minimum principle (PMP) for the SIDAREV model, we 
defined an unconstrained minimization problem. Applying the Hamiltonian conditions, we 
approximated the obtained ordinary differential equations (ODE) using ANNs. We utilized 
the multilayer perceptron (MLP) to obtain the approximate solution of the states and co-
states functions.
Results: We observed the effects of optimal control strategies, and to show the efficiency of 
the proposed method, we compared it with the Runge-Kutta method through some examples.
Conclusion: Using a mathematical model that simulates the behavior of the Covid-19 
disease, we can examine the effects of controllers such as government interventions, tests and 
vaccinations with the neural network method. The results show that this method is useful in 
solving the problem of optimal control of infectious diseases.
Keywords: Optimal control, Pontryagin’s minimum principle, Artificial neural network, 
SIDAREV model, COVID-19
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Introduction

At the end of 2019, a new coronavirus was 
reported in Wuhan, China (1). This virus, 
which spread rapidly in China and other parts 

of the world, is known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) (2). On March 
17, 2020, the World Health Organization (WHO) 
officially declared the coronavirus as a pandemic. 
Due to the current situation, in addition to facing a 
novel human tragedy, the world was faced with the 
fear of economic failure. More than 6 million deaths 
and 500 million infectious cases were reported by the 
WHO in the time of writing this article. Headache, 
difficulty in breathing, fever, loss of smell, cough, and 
loss of taste can be included among the symptoms of 
this deadly disease. Despite strict measures to control 
and prevent the infection, types of this disease, such as 
alpha, beta, delta, and now the Omicron type, among 
the effects of which is an increase in the number of 
infected people, followed by an increase in the death 
rate appeared all over the world (3). Governments 
around the world implemented extensive non-

pharmacological interventions to combat the effects 
of this virus, such as quarantine policies and social 
distancing, banning public events, personal hygiene 
and cough etiquette, closure of schools, wearing face 
masks, and self-isolation (4). At first glance, such 
interventions reduce the spread of the virus and the 
infection rate of the disease (5), but in the long term, 
it imposes severe negative effects on the economy, 
which can lead to the most severe global recession in 
more than 40 years and the loss of more than 5% of 
the gross domestic product in developed countries 
(6). Therefore, the implementation of policies such as 
quarantine and social distancing may be effective in 
containing the virus, but it is economically costly for 
governments and naturally turns such decisions into 
a multi-objective problem. With the advent of the 
Covid-19 disease and its types, mathematical models 
were used to formulate effective policies to reduce 
their impact and describe the dynamic evolution 
of the pandemics (7). The widely used susceptible-
infected-recovered (SIR) model is analyzed in (8). For 
a comprehensive review of epidemiology models, the 
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reader is referred to (9). In these models, it is possible 
to study the progression of various diseases over 
time, observe the dependence on model parameters, 
and facilitate the description of their asymptotic 
behavior. Recently, researchers have proposed 
different approaches to model the progression of 
the COVID-19 outbreak. For instance, in (10), a 
common approach is to use different extensions of 
the SIR model. In (11), a time-varying susceptible-
infected-recovered-deceased (SIRD) model has been 
proposed. Also, in (12), Giordano et al. used a more 
involved compartmental model, offering larger 
modeling flexibility compared to simpler models. 
Rossa, in (13), established the regional heterogeneity 
of the pandemic by a developed model.

In general, our goal in this article is to analyze 
a model that, in addition to reducing the socio-
economic cost, can reduce the number of people who 
die due to this disease to the lowest possible amount. 
Therefore, we should design the optimal control 
strategy related to measures such as government 
intervention, testing, and vaccination policies during 
a disease outbreak. To achieve this strategy, we defined 
the SIDAREV (susceptible, infected undetected, 
infected detected, acutely symptomatic, recovered, 
extinct, vaccinated) model that takes into account 
the effect of government intervention policies. In this 
model, it is possible to integrate features such as the 
impact of existing healthcare capacity, testing and 
vaccination rates. 

In this study, to investigate the problem of forming 
a practical intervention strategy and the efficiency 
of the government, we used the theory of optimal 
control, which limits the number of deaths caused by 
the COVID-19 pandemic. Research has already been 
conducted on optimal control in epidemics (especially 
due to the COVID-19 pandemic). In (14), an optimal 
control strategy was investigated in which the number 
of deaths and the costs related to implementing the 
control strategy was minimized. In (15), an optimal 
control analysis was performed, which showed 
that optimal preventive strategies such as public 
health education, personal protective measures, and 
treatment of hospitalized cases effectively reduced 
the number of COVID-19 deaths. In (16), two optimal 
control policies were analyzed. The first is the open-
loop optimal control policy, in which the number of 
fatalities can be decreased significantly under the 
assumption of exact model knowledge. They stated 
that this was not a realistic scenario in the real world 
since it should deal with uncertain data and model 
mismatch. Therefore, they designed a feedback 
strategy that updated the policy weekly using model 

predictive control. Also, they found that this feedback 
control was robust and necessary for reliably handling 
an outbreak. Other studies for optimal control can be 
found in (17). The model used was a modified version 
of the existing SIDARE model used in (18). In this 
study, a vaccination compartment was added to the 
model; therefore, this model is called SIDAREV. 
In (19), the vaccination compartment was omitted 
and linked the vaccination parameter  directly to 
the recovered compartment.  described the rate at 
which susceptible individuals got vaccinated. 

Now, we are looking for a method to solve the 
model resulting from the optimal strategy problem. 
Many researchers have studied optimal control 
theory to investigate measures to control and reduce 
the effects of the disease (20-22). In this work, we are 
going to use ANNs to analyze the optimal control 
strategies designed on the SIDAREV model. ANNs 
are one of the effective methods that have been 
used in recent decades to solve various nonlinear 
problems, and their results can be compared with 
other problems using mathematical algorithms. In 
(23), ANNs were used to solve ODEs and PDEs for 
boundary and initial value problems. Based on a 
reinforcement learning scheme, Vrabie et al. in (24) 
solved continuous-time direct adaptive optimal 
control for partially unknown nonlinear systems. 
The theory and applications, algorithms, modeling, 
design, and mathematics of neural networks can 
be found in many sources (25), particularly the 
numerical solution of ordinary and partial differential 
equations (26, 27), mathematical programming 
(28, 29) and optimal control problems (30, 31). In 
(32), the fuzzy neural networks (FNNs) algorithm 
was utilized for detecting cardiovascular diseases. 
Using various types of ANN, Acar et al. applied 
the backpropagation (BP) algorithm for forecasting 
diabetes mellitus (33). In (34), Afshar et al. used the 
Levenberg-Marquardt learning algorithm for the 
recognition and prediction of leukemia. Khemphila 
et al. applied ANNs for heart disease classification. 
MLP with a BP learning algorithm was employed for 
neonatal disease diagnosis in (35). Heydari Dastjerdi 
et al. investigated the SEIR epidemic model related to 
infectious diseases by using artificial neural network 
(36). This study aimed to use the ability of ANNs to 
approximate the states and co-states functions of the 
SIDAREV pandemic model. 

Model Description 
The SIDAREV model has seven components, and we 
express the relationship between these components. 
It is assumed that  denotes the infection rate 
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for susceptible individuals,  denotes the rate of 
detection of infected individuals based on the level 
of testing,  describe the recovery rate for 
infected undetected, infected detected, and acutely 
symptomatic (threatened) individuals, respectively, 

 denote the rate when infected individuals 
become acutely symptomatic (threatened) and,  
denotes the rate at which susceptible individuals 
get vaccinated. We aimed to examine the effect of 
three controllers on the SIDAREV model, so we will 
introduce these controllers. Three control inputs , 

, and ) indicating  the strength of the government 
interventions, strength of the testing policy, and 
strength of the vaccination policy, respectively, were 
added to the SIDAREV model. In (18), the impact 
of healthcare capacity on the mortality rate was 
included; once the healthcare capacity exceedes, 
the mortality rate will increase. On the other hand, 
regular care can no longer take place at this time; as 
a result, many more individuals die.  This change can 
be modeled as follows:

 where the function  describes the 
mortality of the acutely symptomatic population. 
Furthermore,  is five times higher than the current 
mortality rate, i.e.  and  indicates the 
hospital capacity. Given all the stated assumptions, 
the dynamics of the SIDAREV model including the 
change in the mortality rate and the controllers can 
be constructed as follows: 

A schematic diagram of the SIDAREV model is 
shown in Figure 1.

Note that all model parameters are constant and 
non-negative. The SIDAREV model is based on the 
following assumptions:

• The considered population is constant, i.e., no 
births or deaths not attributed to a particular disease 
outbreak are taken into account.

• Infected individuals that are detected are 
assumed to be quarantined immediately, so that they 
do not contribute to new infections.

• Infected individuals become first acutely 
symptomatic before they die.

• Acutely symptomatic individuals require 
hospitalization since they are considered threatened 
with decease.

• Only susceptible individuals are vaccinated.
• Vaccinated individuals are immune to the disease 

and, thus, cannot become susceptible anymore.
Our purpose in this model is to reduce the number 

of threatened individuals, the use of government 
intervention, testing, and vaccination and finally, the 
number of deceased individuals in the final time T. 
Therefore, we define the objective functional as follows.

where  is the positive weight coefficient to obtain 
balance in the optimization function, and ,  and 

 measure the relative cost of the optimal control 
input and can be adjusted as desired. As with the first 
term,  provides a positive weight factor to balance 
the optimization function. The reason for the second 
power of the variables is the ease of solving the model.

It should be noted that there are limitations for 
controllers. It is assumed that the number of infections 
can be decreased at its maximum value by 80%, so the 
maximum value that  can take is 0.8. For control 
of input , when the control input equals 0, the 
detection rate of infected individuals is 0%. When the 
control input equals 1, the detection rate of infected 
individuals is 100%; thus, the maximum value that  (1)

Figure 1: Schematic diagram of the SIDAREV model
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can take is 1. Finally, the maximum value that  can 
take is 1. When no control input is applied, the rate 
of vaccination of susceptible individuals is 0%. When 
the maximal control input is used, the vaccination 
rate of susceptible individuals is 100%. Given the 
objective functional and control inputs, the optimal 
control problem can be described as follows:

                                     (2)

where       and 
 represent the number of susceptible, infected 

undetected, infected detected, acutely symptomatic, 
recovered, extinct, and vaccinated individuals, 
respectively at the time t . We normalize all 
seven components in the SIDAREV model. In other 
words, we set the entire population equal to , as:

.

We will use the ANNs to obtain the optimal 
solution of the presented model, so here we give brief 
information about ANN. 

Applying the PMP and the ANN
Consider the optimal control problem as follows:

                           (3)

where  and  are the state 
and control variables, respectively, and . It 
is assumed that g is Lipschitz continuous on a set 

, and  and  are fixed; also, the integrand  
has continuous first and second partial derivatives for 
all its arguments. 

PMP is a tool to create an ODE system in which 
the state and co-state variables are satisfied in the 
optimal conditions.

Theorem 1: If  is an optimal solution of (3), 
then there exists a piecewise differentiable adjoint 
function , such that

where  is the following Hamiltonian: 

The proof can be found in (37).
A system of ODEs is constructed by equations (4), 

(5), and (6) that can be solved by numerous numerical 
methods. To solve the obtained equations, we made 
an attempt to propose an approximation scheme.

We define the trial functions, so that the initial 
conditions are satisfied, so we have:

It is clear that  satisfies the initial condition, 
. If  is free, then we must have 

. Note that , , and  are the neural 
networks for the state, control, and co-state functions, 
respectively. Each ANN contains its particular 
adjustable parameters. The proposed ANN is in the 
following form: 
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where  is a vector containing bias weight,  is a 
weight vector of the input layer,  is a weight vector 
of the output layer, and  is an arbitrary activation 
function. In this work, the activation function is 

. Based on Kolmogorov’s theorem (38), we 
can implement any continuous function for an MLP. 
As an example, Figure 2 shows the overview of the 
neural network of .

By replacing the trial solution in relations (4), (5), 
and (6), the following unconstrained optimization 
problem can be obtained.

where , and

also,
 

We discretize the interval  by  points for 
solving the unconstrained optimization problem 
(8). To solve (8), an optimization algorithm such as 
Newton, steepest descent, or Quasi-Newton methods, 
etc., can be applied.

Now according to the explanations provided 
about the ANN, we examine the optimal control 
problem related to the SIDAREV model. First, the 
Hamiltonian function is constructed; then, PMP is 
used to find the conditions of the optimal control 
problem (39), and finally, the solution is given by 
ANNs. The Hamiltonian function can be defined as 
follows:

where the values , , , , , , and  are 
the associated adjoints for the state variables   

    and , respectively. Due to relation (5), 
the dynamic system of relation (1) is obtained. Based 
on relation (4), we create the adjoint system as:

 (11)

Due to the relation (6), we have:  

based on the optimality conditions, we conclude:

Now, we will construct the trial solution for state 
and co-state functions using the MLP. Note that 
because       and  do not have fixed 
values at the final time, the values of the associated 
adjoints at the final time are zero. The trial solution of 
the state and co-state functions is defined as:

and

where  is and V variables, and  is 
     and  variables. It is necessary 

to remember that state and co-state variables have 
their weights and biases vectors.

The basis of solving the SIDAREV model 

Figure 2: Overview of the neural network of .



224 Health Man & Info Sci, October 2022, 9(4) 

Heydari Dastjerdi R et al.

by ANN is as follows:  first, we set the initial 
value of the control variables equal to zero  
( . Then, by replacing 
the trial solutions in the relation (1) and (11), the 
first and second of relations (9) are made. Finally, 
after obtaining new values from them, according 
to relations (12), the control variables are updated. 
We repeat this process until the distance of all the 
components are very close to the components of the 
previous step. In the MATLAB program related to 
this issue, we have set this distance equal to . 

Numerical Results
This section describes the experiments related to 
optimizing control inputs ,  and . ANNs 
are applied to consider the SIDAREV model. In 
this work, a left point Reimann sum is incorporated 
into the programs to approximate the objective 
functional. The neural network related to each of 
the variables includes fifteen adjustable weights, 
five weights of which are considered for each of the 
input layer, output layer, and bias. By placing the trial 
solutions in the first and second parts of relations (9), 
all these weights are updated by the neural network; 
then, controllers are updated by relation (12). The 
proposed scheme was tested in two experiments. The 
optimal control problem with the values is shown in 
Tables 1 and 2. The testing rates are taken from the 
research of Kasis et al. in (18). Assume that 0.0001% 
of the population is infected with the virus and no 
detected, acutely symptomatic, deceased, recovered, 
or vaccinated individuals at the start of the pandemic.

Since  the 
susceptible population is . The pandemic 
is simulated on  where T equals 365 days.

In this part, we apply ANN for solving the 
SIDAREV model. It is clear that state variables can be 
formulated as follows:

Also, for the associated adjoint variables, we have:

All the calculations were executed and 
implemented with MATLAB software in a system 
with 4 GB of RAM.

Experiment 1: In this experiment, no control 
inputs were optimized. It was assumed that no 
government interventions were carried out, no 
tests were taken, and no vaccinations were given. 
This means that all control inputs were set to 0. 
This experiment shows what the effects of a disease 
outbreak are when a disease can run its free course. 

Table 1: Values of parameters
Value Description

Infection rate susceptible individuals

Recovery rate undetected individuals

Recovery rate detected individuals

Recovery rate threatened individuals

Rate of detection of infected 
individuals (level of testing)

0053
Rate infected individuals threatened

53
Rate infected detected individuals 
threatened

00333)
Healthcare capacity

0085 Mortality rate of disease

Mortality rate of disease when 
healthcare capacity is exceeded
Vaccination rate of susceptible 
individuals

Table 2: Initial conditions of SIDAREV model
Value Description

initial susceptible population

initial infected undetected 
population
initial infected detected 
population
initial acutely symptomatic 
population
initial recovered population

initial extinct population

initial vaccinated population
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Almost the entire population is in the susceptible 
state at the start of the disease outbreak. It is clear 
that no infected detected individuals ( ) can be seen 
in Figure 3, because testing was not done. In Figure 3, 
the approximate solutions of the state variables of the 
suggested idea are shown. The objective functional 
value was 0.

Experiment 2: In this experiment, the control 
inputs ,  and  were optimized simultaneously. 
Based on a changing weight factor , the influence of 
the control inputs can be analyzed. It was assumed 
that the weight factor was . Also, we had 
the following assumptions:

• The maximum testing rate  is set to 0.1.
• The maximum vaccination rate  is set to 

2.5/1000.
• The weight factors for  are assumed to be  = 

3,  = 2 and  = 1.
In Figure 4, some of the states and controls 

variables are displayed and the approximate solutions 
of the states and control variables of the suggested 
idea are compared with the Runge-Kutta method 
of the fourth order presented in (40). The objective 
functional value of the Runge-Kutta method was 
66.7719, whereas the idea presented was 66.7204 
(Table 3).

Discussion
In general, by considering all the conditions affecting 
the disease, it is possible to design a mathematical 
model that simulates the behavior of the disease. 
By applying controllers such as vaccination to the 
disease, its performance can be investigated using 
mathematical models. In this article, artificial 
neural network methods were used to show the 
effect of the controllers on the disease. By obtaining 
the Hamiltonian function related to the optimal 

Figure 4: Optimization states and controls functions 

Figure 3: SIDAREV model without optimizing the control inputs
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control problem and applying the optimality 
conditions related to Pontriagin’s minimum 
principle, we were able to form error functions for 
the state and co-state variables and put them in the 
dominant of an unconstrained optimality problem. 
Then, by combining the artificial neural network 
method with the forward-backward sweep method, 
the optimal values of the state, co-state and control 
variables were obtained. Since the type of error 
functions is convex, it can be concluded that in any 
situation, the results of this method are optimal and 
closer to the logical value. The related MATLAB 
software codes  are generated, and used to simulate 
the diagrams related to the effects of controllers. 
Another advantage of this method is that the 
problem can be solved at a few limited points, but 
its value can be obtained at all points located on the 
interval. Comparing the presented method with 
Runge-Kutta method, we came to the conclusion 
that in some cases this method is more practical  
and useful.

Conclusion
By attributing the SIDAREV model to the COVID-19 
disease, the behaviors of this disease can be analyzed 
both with and without a controller. By implementing 
policies such as government intervention, testing, 
and vaccination, we observed the behavior of the 
COVID-19 disease and came to the conclusion that 
this disease could be controlled to some extent. 
This happens when it can be investigated using 
mathematical models by presenting a model that 
simulates the behavior of the disease. In this work, 
inspired by the PMP for the SIDAREV model, the 
unconstrained optimization problem was designed. 
Then, we approximated the solutions of state and 
co-state variables of this problem using the ANN. 
With this, we observed the behavior of the disease 

considering different controllers over time. The most 
exciting characteristic of the ANNs is their capability 
to formulate problems using training. After sufficient 
training, the ANNs can solve problems of the same 
class since training algorithms converge to the 
optimal solutions.

To prove the capability of the ANN, it can be 
compared with the Runge-Kutta method. For future 
works, the proposed method can be utilized to solve 
other pandemic and epidemic models and fractional 
optimal control problems.
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