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 A B S T R A C T

Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both 
in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, 
ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to 
mapping the non-linear input-output relationships and massive parallel computing.
Method: An Extreme Learning Machine (ELM) was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, 
the parameters of ELM were optimized using a Genetic Algorithm (GA), which tuned a set of input variables, hidden layer biases, and 
input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 
protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples 
and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability 
and find out the main features that influence this valuable characteristic. 
Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the 
secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability.  These 
results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the 
results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. 
It is shown that prediction accuracy of ELM (mean square error) can improve dramatically using GA with error rates RMSE=0.004 and 
MAPE=0.1003.
Conclusion: The proposed approach for forecasting problem significantly improves the accuracy of ELM in prediction of thermostable 
enzymes. ELM tends to require more neurons in the hidden-layer than conventional tuning-based learning algorithms. To overcome 
these, the proposed approach uses a GA which optimizes the structure and the parameters of the ELM. In summary, optimization of 
ELM with GA results in an efficient prediction method; numerical experiments proved that our approach yields excellent results.
Keywords: Protein Stability, Primary and secondary structures, Extreme learning machine, Neural networks, Genetic algorithm

Introduction
The industrial application of a protein can be severely 
restricted by low thermostability. Therefore, in the last 
decade, there has been a growing attention to the study 
of thermostability of proteins in an attempt to improve 
the characteristics. This has become a hotspot in protein 
engineering and design (1-6). To successfully engineer 
new proteins, we must identify the factors responsible for 
enzyme thermosability and determine what differentiates 
thermophiles enzymes from mesophilic proteins (7-10). 
Data mining is an important branch of research in the 
field of information technology and it has valuable 

application in various fields of biological sciences. Many 
data mining techniques have been used to predict protein 
thermostability (11, 12). 
In order to comprehend the factors influencing protein 
thermostability, most researchers have compared 
homologous mesophilic and thermophilic proteins through 
studying their protein structures and sequences. Zhang et 
al. predicted mesophilic and thermophilic proteins using 
support vector machine (SVM) method and found that 
some of the dipeptide compositions are important for 
maintaining protein thermostability (13). Non-charged 
and hydrophilic residues were found to be critical to 
protein thermostability through decision tree and other 
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pattern recognition methods (14). Features of the primary 
structure of a protein, such as amino acid composition and 
dipeptide composition, have been shown to be the most 
important factor for predicting protein thermostability 
(15, 16). In addition, many studies have suggested that the 
secondary structural composition of a protein is also an 
important factor that affects its thermostability (17-19). 
Gromiha et al. predicted mesophilic and thermophilic 
proteins with neural networks and found that the charged 
residues Lys, Arg, and Glu as well as the hydrophobic 
residues Val and Ile have higher occurrence in thermophiles 
than mesophiles (20).
ANNs are Machine Learning (ML) algorithms that are 
frequently used in enzyme science. Over the last twenty 
years, the use of ANNs has increased rapidly. Furthermore, 
ANN methods have attracted significant attention for 
prediction of thermostability, because they constitute an 
appropriate approach to mapping the non-linear input-
output relationships and massive parallel computing (21). 
However, major challenges imposed by ANNs include the 
requirement to iteratively tune model parameters, slow 
response of the gradient-based learning algorithm and 
the relatively low prediction accuracy compared to more 
advanced ML algorithms. 
Recently, an extensively improved class of ML algorithms, 
known as Extreme Learning Machine (ELM), was 
proposed by Haung (22) for training Single hidden-Layer 
Feed-forward Neural networks (SLFN). In ELM, the 
hidden nodes are randomly initiated and mixed without 
iterative tuning. The only free parameters which need 
to be learned are the connections (or weights) between 
the hidden layer and output layer. However, ELM tends 
to have problems when irrelevant or correlated variables 
are present (23). For this reason, it is proposed in the OP-
ELM methodology, to perform a pruning of the irrelevant 
variables, via pruning of the related neurons of the SLFN 
built by the ELM (24).
Additionally, Evolutionary Algorithms (EA), such as GA, 
can perform well for optimization of non-linear complex 
system. EAs are search and optimization methods based 
on the principles of natural evaluation and genetics which 
try to approximate the optimal solution of a given problem 
(25, 26). 
Thus, the objective of this study is to present a new 
methodology to understand the features contributing to 
enzymes’ thermostability and achieve high accuracy for 
the prediction. The predictor model used in this study is 
an optimized ELM algorithm which uses a GA in order 
to generate the hidden weights and biases; therefore, 
the algorithm is able to obtain the appropriate number 
of hidden nodes. Next, the model is trained using a few 
thousand mesophilic and thermophilic enzymes in order 
to predict thermal stability directly and accurately. Our 
data showed that both primary and secondary structural 
features contributed to the thermostability of the proteins. 
However, the influence of primary structural features 
on protein thermostability was more important than that 
of secondary structural features. Performance of the 
proposed algorithm has been shown to be comparable to 
another popular neural network called RBF.

Method
A. Extreme Learning Machine 
This section briefly reviews ELM originally proposed 
by Guangbin Huang (22, 27). The main concept behind 
ELM lies in the random initialization of the SLFN weights 
and biases. Therefore, the input weights and biases do not 
need to be adjusted, which makes it possible to explicitly 
calculate the hidden layer output matrix and hence 
the output weights. Fig 1. shows an ELM architecture.  
Consider a set of M distinct samples (xi, yi)  with xi€Rd1 and 
yi€Rd2; then, a SLFN with N hidden neurons is modeled as 
the following sum: 

With f being the activation function, wi the input weights, 
bi the biases and βi   the output weights. ELM is constructed 
in a way that it perfectly approximates the given output 
data:

Which writes compactly as HB = Y, with

H is called the hidden layer output matrix of ELM. The 
objective function for training ELM is

However, ELM tends to have problems when irrelevant 
or correlated variables are present (23). For this reason, 
it is proposed in the OP-ELM methodology to perform 
a pruning of the irrelevant variables, via pruning of the 
related neurons of the SLFN built by the ELM (24).
Figure 1. The structure of ELM (23)
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B. Case Study: Amino Acid Data set 

UniProt database (published 2014.02) was searched and 
protein sequences containing “temperature dependence” 
item in “general annotation” were downloaded. 
Incomplete, shorter and non-enzymatic sequences were 
removed. Similarity of the sequences was calculated, 
and those with a score larger than 95% were removed. 
The optimum temperature of a protein was determined 
based on “temperature dependence” item in protein 
properties or by reviewing extant literature. Based on their 
optimum temperature, the proteins were categorized into 
thermophilic (over 70 °C) or mesophilic (below 70 °C) 
(28, 29). After filtering, a dataset containing 1289 proteins 
was obtained, including 342 thermophilic proteins and 
947 mesophilic proteins. The basic specifications of the 
datasets are shown in Table1.

Table 1. Protein features used in this study

Feature Type Feature Dimension Feature
Primary structure 
  

Amino acid 
composition

20 A, C, D, E, F, G, H, I, K, L, M, N, P, 
Q, R,S, T,V, W, Y

Amino acid class
composition 
 

10 polar, nonpolar, basic_polar,
acidic_polar, all_
polar,neutral,charged, hydrophobic, 
hydrophilic,large_hydrophilic

Dipeptide 
composition

400 AA, AC, AD, AE, AF, AG, AH, AI, 
AK, AL, AM, AN, AP, AQ, AR, AS, 
AT, AV, AW,AY,CA, CC, CD, CE, 
CF, CG,CH, CI, CK,CL, …,YY

Secondary
structure 

3 Coil, Extended strand, Helix
Amino acid
composition of
secondary
structure  

60 A_Coil, A_Extended strand, 
A_Helix, C_Coil, C_Extended 
strand, C_Helix, D__Coil,D_Extend-
ed strand, D_Helix, …,Y_Coil,
Y_Extendedstrand, Y_Helix

Amino acid class
composition of
secondary
structure  

30 polar_Coil, polar_Extended strand, 
polar_Helix, …,  large_hydro-
philic_Coil, large_hydrophilic_
Extendedstrand,large_hydrophilic_
Helix

Amino acid
composition of
specific secondary
structure 

60 Coil_A, Extended strand_A,
Helix_A, Coil_C, Helix_C, 
Extended strand_C, 
D__Coil, D_Extended strand, 
D_Helix, …, Coil_Y,
 Extended strand_Y, Helix_Y

Amino acid class
composition of
specific secondary
structure  

30 Coil_polar, Extended strand_polar, 
Helix_ polar, …, 
Coil_large_hydrophilic,
Extendedstrand_large_
hydrophilic,Helix_large_hydrophilic

C. Data set Description 

Amino acid composition
Amino acid composition is the most classical and most 
widely used protein feature in bioinformatics applications. 
The amino acid composition of each protein sequence was 
calculated using the following formula.

Where i represents the type of amino acid and n_i  
represents the number of amino acid i contained in protein 
sequence.

Dipeptide composition
Dipeptide composition is another common protein 
sequence feature. The dipeptide composition of each 
protein sequence was calculated using the following 
formula.

Where nij represents number of dipeptide ij and L 
represents the length of protein sequence.

Amino acid class composition

Amino acids can be divided into four classes based on 
their polarity (polar, nonpolar, basic polar and acidic polar) 
or charges (neutral, charged, positive charge and negative 
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charge). Furthermore, they can also be divided into three 
classes based on their hydrophobicity (hydrophobic 
if the hydropathy is greater than 0; hydrophilic if the 
hydropathy index is greater than -2 but less than 0; and 
highly hydrophilic if the hydropathy index is less than -3). 
The compositions of these groups of amino acid were then 
calculated.

 Composition of Secondary structure
Protein secondary structure was predicted with software 
(psipred) (30). The proportions of coil, extended strand 
and helix were calculated using the following formula.

Where num(coil) represents the number of amino acids in 
coil and L represents the length of protein sequence.

Amino acid composition of secondary structure

The amino acid composition of the secondary structure is 
the ratio of the number of a specific type of amino acid in 
the secondary structure to the total amino acid number. 
For example, the ratio of Ala in the coil to total amino acid 
was calculated using the following formula.

Where num(A_coil) represents the number of Ala in coil 
and L represents the length of protein sequence.

Amino acid class composition of secondary structure

 The amino acid class composition of the secondary 
structure is the ratio of the total number of a specific 
amino acid class in the specific secondary structure to the 
total amino acid number. The formula used to calculate 
this feature is similar to that used to calculate the amino 
acid composition of the secondary structure.

 Amino acid composition of specific secondary structure

 Amino acid composition of a specific secondary structure 
is the ratio of the number of a specific type of amino acid 
to the total amino acid number in the specific secondary 
structure. For example, the ratio of Ala in the coil to total 
amino acid in the coil was calculated using the following 
formula.

Where num(coil_A) represents the number of Ala in coil 
and num(Coil)represents the number of amino acid in coil.

Amino acid class composition of specific secondary 
structure

 The amino acid class composition of a specific secondary 
structure is the ratio of the number of a specific class of 
amino acid to the total amino acid number for a specific 
secondary structure. The formula used to calculate this 
feature is similar to amino acid composition of specific 
secondary structure’s formula.

D. Feature Selection
  Since only a few parameters are important, feature 
selection algorithms can create a more manageable 
dataset of features by eliminating parameters which have 
no influence on thermostability. In order to investigate 
features that affect the thermostabilty of an enzyme, Weka 
3.6 software suit was used. There were 613 attributes for 
enzymes. The selected features were classified as either 
important or unimportant. Several important features 
were identified, which play a critical role in thermostabilty 
of an enzyme. 
Following the normalization of the dataset, each protein 
feature gained a value between 0 and 1, revealing the 
importance of that feature with regards to a target feature. 
The features with a weights over 0.5 were selected. A total 
of 50 important features which influence thermostable 
enzymes were identified. Table 2 shows the most effective 
features selected by different algorithms. The feature 
selection algorithms are CFS, Relief, Information Gain, 
Information gain ratio, and Symmetrical Uncertainty. 
Table 2. The most important features selected by different 
feature selection algorithms

Feature Type Number of 
features

Primary 
structure

E(Glu), Q(Gln) , neutral, 
charged
Polar, EK, basic_polar
 S(ser), I(Ile), EE, acidic_polar
IE, K, IK, KE, C, RE
 T, KI, hydrophilic
 KK, V, SA, EI, W, H
AA, QQ, LQ, DH, N, CC, 
hydrophobic, D, YG, AN
DE, DD, DA, A, DC, VY

43

Secondary
structure

large_hydrophilic, Helix_S,   
Coil, charged_Coil
Coil_E, Coil_A, Coil_polar

7

As can be seen, the influence of primary structure on the 
thermostabilty of a protein is more important than that of 
the secondary structure, so thermostability of proteins 
is mainly associated with primary structural features in 
protein.

E. Proposed Optimization Methods
In this section, we will present the building blocks 
of the proposed optimization method, including the 
representation of the individuals, different operators of 
variation, and the evaluation processes. The GA used 
in this paper is devoted to mixed integer optimization 
problems (31). In (31), the authors proposed a methodology 
that allows solving optimization problems where the 
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decision variables can be a combination of real, integer, 
and binary variables.
Initial population and its individuals 
GAs work by evolving populations, i.e. sets of solutions, 
usually named individuals. In order to increase GA 
flexibility and minimize the cost functions, in the proposed 
approach, all variables were mapped onto continuous 
values between 0 and 1. The population npop*nvar 
population matrix for this GA is represented by

Where v m,n=variable n  in chromosome m with 0≤vm,n≤1. 
Each row is a chromosome and each chromosome 
represents one possible solution to the optimization 
problem.

Evaluation processes
Each chromosome can be evaluated using a fitness 
function that is specific to the problem being solved as all 
variables are mapped onto continuous values between 0 
and 1. Prior to calculating the fitness of each individual, 
these values need to be converted into the actual variable 
values according to the domain of the problem and the 
corresponding true variable types. 
The true value of the l-th variable (m = 1, 2. . .) of individual 
n (n = 1, 2 . . . m),vm,n is converted to real variablexn , 
integerIn, or a binary digitbn. 

Where min and max represent variable bounds. the 
rounddown function rounds a value to the next lowest 
integer, and round is a function that rounds to the nearest 
integer. The advantage of this approach is that scaling, 
quantization, and rounding are carried out in the cost 
function, so the GA operates independent of the variable 
type and operators can work with any combination of 
variable types.

The Fitness Function
Following the conversion of variables, the fitness of each 
individual can be obtained. The fitness function to evaluate 
a chromosome in the population can be written as:

Where the fitness function ψ (•) is specific to the problem 
being solved. Based on their fitness values, a set of 
individuals is selected to survive to the next generation 

while the remaining chromosomes are discarded. The 
surviving individuals form themating pool and the 
discarded chromosomes are replaced by new offspring. 
To select the parents from the mating pool, in this study, 
tournament selection was used (31). For each parent, five 
individuals from the mating pool were randomly picked 
and the individual with best fitness was selected to be 
the parent. For each pair of parents, two new individuals 
(offspring) were generated through crossover and 
mutation. The crossover operation involved producing 
offspring from the selected parents.

Crossover Operator 
In the proposed algorithm, the top 50% of the chromosomes 
survive to be part of the mating pool. Tournament 
selection with two chromosomes per tournament was 
used. Roulette wheel selection with rank ordering would 
give nearly equivalent results (31). At this point, mating 
between two selected chromosomes can be done using one 
of the many different real or binary crossovers. Uniform 
crossover provides a larger exploration of the cost surface 
than other approaches (30), so it is selected for the purpose 
of this algorithm. First, a random binary mask with the 
same length of the individuals is created. In this approach, 
only one offspring is created for each pair of parents. So, 
each offspring receives values of variables from the first or 
second parent depending on whether the value of the mask 
bit is zero or one: offspring 1/(2), receives the values from 
parent 1/(2) if the respective mask bit is one and receives 
the values from parent 2/(1) if the respective mask bit is 
zero. Consider the following example:

This type of crossover results in a variety of outcomes if 
the values are binary, but only interchanges ones between 
chromosomes if the values are integer or continuous. 
Consequently, the mutation introduces new values within 
the population of continuous values. 

Mutation operator

One approach to mutation is to randomly select variables 
in the population and replace them with uniform random 
values. Another approach is to add a random correction 
factor, which may be created by multiplying each element 
within a chromosome by a random number (-1≤βrm≤1) 
and multiplying the entire chromosome by a mutation 
factor(0≤αr≤1).
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Optimized-ELM uses the mutation operator to maintain 
the diversity of the population and prevent the algorithm 
from being trapped in local minima.  For each new 
offspring, a random number r is generated and r<rm, where 
rm is the mutation probability; this offspring is mutated. 
Mutation acts a 2 step operator. First, a random element 
of the individual is replaced with a uniform random value 
within the interval [0, 1]. Being pk=[pk1,pk2  ,pk3,pk4 ]

T the 
offspring, if the second chromosome is to be replaced, the 
mutated chromosome is given by:

Where pk2/ is a new random value within the interval [0, 
1]. In a second step, a random adjustment factor is added 
to the chromosome, whichis obtained by multiplying each 
elementl within the previously mutated chromosome pk

1  by 
a random number (-1≤βk1≤1) and multiplying the resulting 
chromosome by a mutation factor(-1≤ηk≤1) so that:

Finally, the mutated chromosome is given by:

Where rem is the remainder function (digits to the left 
of the decimal point are dropped). This type of mutation 
modifies the entire chromosome rather than a single 
variable. 
Once the best solution is found, all answers need to be 
converted into their true value (31). As mentioned before, 
all decision variables are mapped onto real variables 
within the interval [0, 1]. Binary variables si,i = 1...n,  are 
converted using In.Eq.10 while integer variables sλ j,j = 
1...h, are converted using In.Eq.10. Furthermore,  Eq. 14 
is utilized to convert the input weights wijand bias bj, 
considering that the lower and upper bounds are -1 and 
1. Finally, the regularization parameter is also converted 
using Eq. 13, since the lower and upper bounds are 0 and 
100.

Experimental results 

This section presents experimental results using our 
model on the protein sequence dataset described in the 
previous section. Our findings are shown in several tables 
and plots. The performance of the proposed ELM is 
compared with that of an ANN by evaluating numerical 
computations. All simulations were conducted in Matlab 
R2010b environment running on a PC with a 2.5 GHz 
Core™ i5 CPU and 6 GB RAM.
In this paper, in order to reduce the number of features 
and the computational time, the most effective features 
for thermostability of protein were extracted and selected 
using feature selection algorithms according to methods 

defined in section3. Then, these data with 50 features and 
1289 samples were trained with ANN and our optimal 
algorithm, ELM, for prediction. For this, datasets were 
divided into two parts for training and test purposes. 
The former was used to train the model, while the latter 
computed predictions and compared them with original 
values. 80% of the instances were used for training and 
20% for testing purposes. 
First, to estimate the accuracy of the prediction model and 
compare the performance of the models, generalization 
errors should be calculated. Thus, the proposed ML 
algorithm was statistically evaluated using the following 
score metrics or prediction error indicators: Root Mean 
Square Error (RMSE), and Mean Absolute Percentage 
Error (MAPE):

Where xT  and xP are the predicted and observed values, 
respectively.
A comparison of the performance based on statistical 
analysis of error of the predicted output with the observed 
values for each model was conducted. Results of the 
experiments, training and testing instance, Error Rates, 
number of hidden nodes of the ELM and ANN are given 
in Table 4. Also, the performance comparison of RBF 
with G-ELM, is shown in Table 3. The optimal method 
produces suitable results in terms of accuracy as well as 
RMSE error.  It is clearly observed that G-ELM testing 
accuracy is higher than RBF (because RMSEG-ELM < 
RMSERBF). It is clearly proved that the ELM produces 
efficient and suitable results compared to popular ANN 
predictor. 
Fig 2  presents the GA convergence curves of our method 
from the analysis of the figure. Seen from this figure, the 
GA converges with sufficient speed. Fig 3   shows the 
true and the approximated function of the ELM learning 
algorithm. The red line is Expected values and the blue 
line is actual values.  As shown in  Fig 3a, once trained, 
the model has the capability to estimate the termostability 
in protein sequences well with satisfactory accuracy. The 
estimated values of the proposed model are plotted in 
Fig3b. As can be seen, expected values and actual values 
are close to each other.
Cross-validation techniques can be used to determine how 
well the prediction method will work.  While a model 
may minimize the Root-Mean Squared Error on the 
training data, it can be optimistic in its predictive error. 
The partitions used in cross-validation help to get a better 
assessment of a model’s predictive performance. Each data 
set is first randomly divided into a training and test subset 
for five-fold cross-validation (32). The average RMSEELM  
obtained from cross-validation is about 0.08. In Fig 4, we 
plotted the error rate for each value of k, which helps us 
to see in what region there might be a minimal error rate.
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Table 3. Error rates of ELM

Number of instance Number of hidden nodes RMSE MAPE
G-ELM 1031  training

258    test
25 Train Test 0.10031

0.050 0.041
RBF 1031  training

258    test
3 layers, each layer 10 neurons Train Test 0.1096

0.923 0.899
Figure 2. GA convergence curve

Figure 3. Measured and predicted values by ELM model (3.a shows the training process and 3.b shows the test phase)

Figure 4. Error rate for each value of k cross validation

From the experimental result analysis, it is clearly apparent 
that the G-ELM provides superior forecasting performance 
when tuned with genetic algorithm in comparison to RBF 

in prediction of protein thermosability ; therefore, it can be 
considered a viable option to replace ANN for predicting 
and designing thermostable proteins.
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Discussion

Features Contributingto Thermostability
Feature selection algorithms were used to select the 
features that contribute to protein thermostability and the 
results of all algorithms (CFS, Relief, Information Gain, 
Information gain ratio, Symmetrical Uncertainty) were 
merged into one dataset. After merging the results and 
removing the duplicate features, a new dataset containing 
50 features was obtained (43 primary structure features 
and 7secondary structural features).
In the CFS algorithm, Gln was selected as the most 
important feature. In the second level, Glu and polar were 
selected as the split attributes. Recent studies (14) have 
shown that the frequency of Gln and Glu is important to 
protein thermostability; these findings are consistent with 
the results of this study that Glu and Gln are the main 
amino acids responsible protein thermostability and the 
average compositions of Glu in thermophilic proteins are 
higher than that in mesophilic proteins. It is known that 
charged residues appear more frequently in thermophiles 
(20). Glutamic acid is a negatively charged amino acid 
residue, and it may enhance protein thermostability via 
forming more hydrogen bond or salt bridge to increase 
protein structure stability. Thus, protein thermostability 
can be enhanced by increasing the content of Glu or 
decreasing the content of Gln in a protein sequence.
The number of protein secondary structural features was 
lower in the feature selection algorithms and most of 
them were in the middle or the bottom of the 50 selected 
features. This suggested that the influence of protein 
primary structural features on protein thermostability 
could be more important than the influence of secondary 
structural features. From the results, Helix_S, was 
selected as the first, and Coil was selected as the second 
important attribute. 

Performance analysis of G-ELM model
Significant studies have been done in the past for better 
generalization, faster learning and rate of convergence. But, 
unfortunately, ELM also suffers with some limitations as 
outliners, irrelevant variables (in the presence of irrelevant 
input variables, a reduction of performance is exhibited) 
and number of hidden nodes (ELM tends to require more 
neurons in the hidden-layer than conventional tuning-
based learning algorithms). To overcome these limitations 
of ELM, constructive and heuristic approaches have 
been proposed in various studies. We used a GA which 
optimized the structure and the parameters of the ELM. 
In summary, optimization of ELM with GA results in an 
efficient prediction method;numerical experiments proved 
that our approach obtains excellent results with MAPE and 
RMSE values equal to 0.0041 and 0.10031, respectively. 

Conclusion and future work
There are a number of challenges in applying ML models 
in protein engineering. The aim of this paper was to 
demonstrate the performance of an ANN-based ELM. 
This study analyzed a large number of protein sequences 
(1289) with 430 primary structure features and 183 

secondary structure features through ELM neural network 
and genetic algorithms. 
We have made a detailed statistical analysis on amino acid 
composition and found that Gln, Glu and polar were the 
main amino acids responsible for protein thermostability. 
Regarding the secondary structural features, Helix_S, 
Coil, charged_Coil were the most important features with 
respect to protein thermostability.
The results of the proposed approach for prediction 
obtained from our models suggested that the primary 
structural features of a protein may exert a stronger 
influence on its thermostability than the influence of 
secondary structural features. This would help the 
researchers to avoid repeating related experiments on 
protein secondary structure. Our findings may provide 
the theoretical support for enhancing the thermostability 
of proteins for industrial application, such as microbial 
enzymes to be used in the food industry.
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