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Introduction 

uman  Activity Recognition (HAR) 
offers a range of practical applications, 
including detecting suspicious behavior, 

monitoring individuals,  and especially 
monitoring patients and students in healthcare 
and educational environments (1). HAR is 
the process of automatically identifying and 

classifying human actions using data from videos 
and sensors like accelerometers and gyroscopes 
in smartphones or wearables. HAR is crucial 
in applications like health monitoring, fitness 
tracking, and security by providing real-time 
insights into physical movements. It involves 

collecting sensor data and using machine learning 
or deep learning models to classify activities. 
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HAR structures are widely used in different 
domains, such as urban area studies (2, 3), medical 
treatment (4), student health monitoring (5), gait 
analysis (6, 7), human behavior analysis (8), and 
everyday activity monitoring (9). These systems 
can be divided into sensor-based or vision-based 
categories based on the type of information they 
handle. Notably, HAR models provide numerous 
research benefits, such as location independence, 
energy efficiency, ease of use, accessibility, and 
cost-effective installation. Sensor data collection 
forms the core of HAR systems, with commonly 
used sensors including accelerometers, 
gyroscopes, and magnetometers embedded 
within digital devices like smartwatches and 
smartphones (10). 

Abstract 
Introduction: The rise of smartphone sensors, especially accelerometers, has expanded the 

scope of Human Activity Recognition (HAR). HAR plays a key role in monitoring student 

health by offering real-time insights into physical activity and promoting healthier behaviors. 

This study aimed to develop an optimized deep-learning model to monitor and classify 

student activities, using accelerometer data for real-time health monitoring. 

Methods: This study developed and optimized a novel deep learning framework using a 

modified version of Bidirectional Long Short-Term Memory (BiLSTM) networks, enhanced 

by the Grey Wolf Optimizer (GWO). The BiLSTM framework automates the feature learning 

process from raw accelerometer data, while GWO optimizes the hyperparameters to improve 

sequence processing and overall model performance. We employed public datasets, UCI- 

HAR and WISDM, for validation, using cross-validation to ensure model robustness. The 

edge computing approach was implemented to enable real-time processing. 

Results: The proposed BiLSTM-GWO framework achieved a classification accuracy of 

97.68%, outperforming existing methods in recognizing student activities. The model showed 

enhanced performance in distinguishing between activities such as walking, sitting, and stair 

climbing, significantly reducing misclassification errors. In addition to accuracy, metrics 

such as precision, recall, and F1 score were evaluated, all showing improvement. GWO 

optimization also accelerated convergence, enhancing suitability for real-time applications. 

Conclusions: The integration of edge computing into the framework provides real-time 

analysis and resource efficiency, making it highly suitable for health monitoring applications 

in educational settings. 
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Monitoring student physical activity and 
health is essential, given its significant role in 
improving academic performance and fostering 
healthier lifestyles. Monitoring student health 
is becoming increasingly crucial in educational 
institutions due to its direct impact on both 
academic performance and long-term well- 
being. The ability to continuously track physical 
activity and health metrics in real-time allows 
educators and health professionals to intervene 
at critical moments, preventing potential health 
issues before they escalate. By incorporating 
advanced HAR systems into schools, we can 
ensure that students maintain a healthy balance 
between academic responsibilities and physical 
activity, contributing to better mental and 
physical health outcomes. This continuous 
health monitoring, supported by edge computing 
and real-time data analysis, creates a safer and 
healthier environment for students, ultimately 
fostering improved educational experiences. By 
tracking student activity, valuable insights into 
their physical health can be obtained, benefiting 
both educators and students. Advances in 
wearable technology and HAR enable precise 
monitoring of student activity levels. This level 
of monitoring is crucial for preventing long- 
term health issues and promoting well-being 
among students. Research suggests that a system 
combining Internet of Things (IoT) sensors and 
machine learning (ML) can effectively assess 
participation in physical education, particularly 
at the university and high school levels, leading to 
improvements in students’ social, emotional, and 
physical well-being (11,12). Additionally, methods 
like Teaching Personal and Social 
Responsibility (TPSR) have been shown to 
positively impact personal and social development 
among secondary school and college students, 
promoting lifelong physical activity and healthy 
behaviors (13). These programs also contribute to 
managing student lifestyles within educational 
institutions. Integrating IoT sensors and smart 
technologies into educational settings enhances 
the ability to monitor student well-being and 
detect potential health risks early, allowing for 
timely interventions (14). By monitoring 
students’ daily activities, educators can tailor 
their teaching approaches to better cater to 
individual needs. Implementing IoT sensors in 
student health monitoring and activity 
recognition systems can enhance health 
management and reduce the 

likelihood of medical emergencies by providing 
real-time data on vital signs (15). 

Based on these applications, HAR using 
smartphone accelerometer data emerges as a 
crucial research area with potential benefits 
for health monitoring, fitness tracking, and 
improving educational environments. 
Automated systems have proven highly effective 
in signal analysis and image/video processing, 
particularly when employing ML and, more 
recently, deep learning (DL) techniques. A study 
by Saha et al. (16) focused on using accelerometer 
data to distinguish six activities performed by 
smartphone users: sitting, standing, lying down, 
walking, climbing stairs, and descending stairs, 
conducted at universities in India. Supervised 
machine learning algorithms, trained on 
accelerometer data collected from 16 individuals 
during their daily routines, successfully predicted 
these activities with 95.99% accuracy. Embedded 
sensors, coupled with anomaly detection 
methods, can identify data samples that deviate 
from the norm (17). 

However, ML methodologies are typically 
favored when there are adequate labeled 
databases, sufficient processing power, clear 
feature extraction methods, and limited training 
time. Despite their benefits, ML techniques 
do have certain constraints. First, they cannot 
handle large unlabeled datasets, requiring 
domain expertise for processing large amounts 
of unlabeled data. Moreover, there is no 
standardized approach for feature extraction in 
ML. Deep learning (DL) methods (e.g., Region- 
based CNNs, YOLO architecture, and Recurrent 
neural networks) are recommended to address 
these challenges (18). DL algorithms excel at 
optimizing themselves through simultaneous 
training and feature extraction. 

Studies have shown that utilizing 
Convolutional Neural Networks (CNNs) 
significantly improves temporal data extraction 
in HAR tasks (19-22). Researchers in (23) 
proposed a more advanced CNN architecture 
with enhanced convolutional layers and the 
removal of pooling layers. Another study (24) 
has introduced an HConvRNN architecture that 
utilizes multimodal sensors for action 
recognition. This hierarchical architecture 
integrates Recurrent Neural Networks (RNNs) 
with CNNs, achieving superior results compared 
to benchmark methods in typical indoor 
settings. To improve HAR performance, a 4-layer 
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hybrid architecture combining Long Short-Term 
Memory (LSTM) with CNNs was proposed (25). 
A key finding of this research is that a 4-layer 
LSTM and CNN hybrid architecture achieved 
a significant 2.24% improvement in activity 
recognition accuracy compared to previous state- 
of-the-art methods. 

Luwe et al. (26) further explored DL for HAR 
using wearable sensors. Their proposed 1D-CNN- 
Bidirectional LSTM (BiLSTM) structure 
integrates a 1D-CNN with a BiLSTM network. 
One-dimensional CNNs excel at extracting 
important patterns from sensor-generated time 
series data. The BiLSTM system, with its unique 
gate mechanisms, effectively encodes long-range 
dependencies within the feature connections. 
This powerful combination yielded impressive 
recognition rates: 94.17% on Motion Sense, 
95.48% on the University of California Irvine 
(UCI)-HAR database, and a perfect 100% on 
Single Accelerometer data (27). 

This research focuses on the critical need for 
student health monitoring, proposing a novel 
framework that utilizes smart phone 
accelerometer data to monitor student physical 
activity and well-being in real time. Our 
approach leverages Bidirectional LSTMs and 
GWO optimization to improve the accuracy, 
precision, and scalability of HAR tasks, 
particularly for tracking student health metrics. 
This methodology automates feature extraction 
and optimizes the model architecture, 
addressing limitations inherent to traditional 
machine-learning methods. The key 
contributions of this article are as follows: 

1. Optimized BiLSTM frameworks for 
student health monitoring: We propose a modified 
BiLSTM framework that utilizes smartphone 
accelerometer data to accurately identify student 
behaviors in classrooms. This approach has been 
validated using two datasets, demonstrating its 
effectiveness as a rapid information processing 
tool for real-time health monitoring and student 
activity analysis. Compared to current state-of- 
the-art strategies, our approach achieves superior 
performance in terms of F1 score, sensitivity, 
precision, and accuracy. 

2. In-Depth student activity analysis with 
deep learning: Our mixed DL framework enables 
a more comprehensive and precise evaluation 
of student activity information. By utilizing DL 
algorithms and accelerometer information from 
smartwatches, the structure can detect patterns 
in student behavior, promoting healthier habits 
through monitoring overall fitness levels, 
sedentary behavior, and exercise routines. 

3. Skipping the server for faster analysis: 
Instead of sending all the data to a central 
computer, this system analyzes important health 
information on the device (like a smartwatch) 
or a nearby device. This keeps things speedy, 
allowing quicker decisions and responses, which 
is especially important for real-time applications. 

Materials and Methods 

We tracked student activity with smartphone 
accelerometers to understand their health. 
Figure 1 shows how we built a method to assess 
their fitness levels during various activities. 

 

 

Figure 1: This figure shows a system that uses a combination of deep learning techniques and data from smartphone accelerometers 

(processed with edge computing) to identify student activities and track their physical health. 
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We designed a special program usings 
martwatches to record student data. To ensure 
transparency, we relied on two public datasets 
(UCI and Wireless Sensor Data Mining or 
WISDM) containing data collected from 
multiple participants (28). 

Datasets 
The UCI HAR dataset we used includes 

activity data from 30 people who used Samsung 
Galaxy S II smartphones (27). These data include 
signals from a gyroscope (50 Hz) and a three- 
axis accelerometer. Table 1 shows the number of 
samples for the acceleration signals in this dataset. 
Before analysis, we cleaned the sensor data by 
applying a filter to remove noise. We then used 
a sliding window approach to collect the data in 
fixed-sized segments (2.56 seconds) with 50% 
overlap between windows. Finally, we separated 
the total acceleration measured by the sensors into 
body movement and gravity using a Butterworth 
low-pass filter with a cutoff frequency of 0.3 Hz 
(effective for removing low-frequency gravity). 

To analyze the activity data, we divided it into 
short segments (windows) and calculated various 
properties from each segment. These properties 
considered both how the data changed over time 
(time domain) and its frequency components 
(frequency domain). There are 561 properties 
in total, and details about them can be found in 
(27). The UCI dataset we used has 7,352 segments 
for training and 2,947 for testing, for a total of 
10,299 segments. 

The second dataset we used is called WISDM 
(28). It contains gyroscope and accelerometer 
data collected from 51 students utilizing Samsung 
(Galaxy-S5 model) smartphones. Moreover, all 
contributors performed 18 different activities 
(listed in Table 2) for an average of 3 minutes 
each, resulting in about 70 minutes of data per 
person. The data were collected at 20 Hz, and each 
segment was 10 seconds long with 200 readings. 
We extracted 92 features from each segment’s 
raw data. The dataset had 16,151 segments for 
training and 6,923 for testing. 

 

Table 1: The sample numbers from the UCI HAR dataset, focusing on acceleration signal data 

Activity Category Testing Sample Count Training Sample Count 

Walking 496 1226 

Sitting 491 1286 

Walking downstairs 420 986 

Lying 537 1407 

Standing 532 1374 

Walking upstairs 471 1073 

Total 2947 7352 

 

 

Table 2: The number of samples in the WISDM Activity Recognition dataset 

No. Samples Abbreviation Activity Category 

1413 Drib Dribbling 

7352 Br_Tth Brush Teeth 

1242 E_san Eat sandwich 

1374 E_cip Eat chips 

1271 Wlk Walking 

1261 F_Clt Fold clothes 

1180 Str Stairs 

1283 Stn_upstr Standing upstairs 

1314 Jagg Jogging 

1431 Ctc Catch 

1226 Drk Drinking 

1180 Dwn_Str Typing downstairs 

1466 Kik Kicking 

1241 Wrt Writing 

1263 Sit Sitting 

1286 E_sup Eat soup 

1270 Clp Clapping 

1407 E_pas Eat pasta 

23074 - Sum total 
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Distributed Computing Platform 
Edge Computing processes data near its 

source, such as on smartphones or IoT devices, 
minimizing the need to send large datasets to 
central servers. This reduces latency, increases 
privacy, and optimizes bandwidth use. In 
contrast, Distributed Computing spreads tasks 
across multiple servers or devices, often over vast 
distances, to handle large-scale computations. 
While Distributed Computing excels in managing 
complex, distributed tasks through coordinated 
systems, Edge Computing emphasizes local, 
real-time processing, enabling faster decisions 
without constant communication with a central 
server. Essentially, Edge Computing focuses 
on quick, local actions, whereas Distributed 
Computing manages more extensive, coordinated 
operations across multiple nodes. Leveraging 
edge computing eliminates the need to transmit 
large datasets to a central server unit. Thus, this 
enables real-time analysis of student activity and 
health data directly on the wristwatch or a nearby 
device. Hence, this facilitates faster responses and 
informed decisions regarding students’ health 
and physical education. Processing data at the 
edge, as opposed to a distant cloud, minimizes 
processing latency, which is critical for timely 
interventions in student health monitoring, 
especially during emergencies. Edge computing 
also bolsters student privacy and data security by 
minimizing the transmission of sensitive health 
and activity data across networks. Additionally, it 
allows for customization of analytical algorithms 
to cater to individual needs or health situations. 

This empowers personalized health monitoring 
and activity tracking for each student. Finally, 
edge computing facilitates distributed analysis, 
enabling several devices to handle student 
activity and health data simultaneously. 

Optimized BiLSTM 
In this section, we describe the optimization 

of the BiLSTM architecture using the Grey 
Wolf Optimizer (GWO). The performance of 
BiLSTM largely depends on the selection of 
optimal hyperparameters, such as the number of 
neurons in each layer, the number of layers, and 
the learning rate. To improve the performance of 
the BiLSTM, we employed the GWO (Figure 2), 
a nature-inspired metaheuristic algorithm that 
mimics the hunting behavior and social hierarchy 
of grey wolves in nature (29). The GWO algorithm 
optimizes complex functions by balancing 
exploration and exploitation phases, making it 
well-suited for tuning the hyperparameters of 
classifiers. 

Moreover, the GWO simplifies the process of 
finding optimal hyperparameters for BiLSTM by 
mimicking the natural hunting behavior of grey 
wolves. Instead of manually testing countless 
configurations, GWO enables the model to “hunt” 
for the best solution by balancing exploration 
(searching for new possibilities) and exploitation 
(focusing on the best options). The algorithm 
organizes the search into a hierarchy where 
leading wolves (alpha, beta, and delta) guide 
the optimization, while the remaining wolves 
adjust their positions accordingly. This dynamic 

 

 

Figure 2: The optimization steps of the GWO algorithm applied to BILSTM networks. 
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process ensures that the algorithm converges 
on the optimal hyperparameters, resulting in 
improved performance for time-series prediction 
tasks. By utilizing GWO, BiLSTM achieves 
greater accuracy, faster convergence, and better 
computational efficiency without the need for 
exhaustive manual tuning. 

The optimization process begins with the 
initialization of a population of candidate 
solutions, referred to as grey wolves, each 
representing a unique set of BiLSTM 
hyperparameters. These wolves are ranked 
based on their fitness, which is determined by 
evaluating the BiLSTM model’s performance 
on a validation dataset. The top-ranked wolves, 
known as alpha, beta, and delta, guide the search 
process, while the remaining wolves update their 
positions based on these leaders. During each 
iteration, the positions of the wolves are adjusted 
to converge towards the optimal solution. 

This adjustment is governed by the GWO’s 
encircling mechanism and hunting strategies, 
which involve calculating the distance between 
wolves and the prey (optimal solution) and 
dynamically updating their positions. The 
convergence of the wolves towards the prey 
ensures that the BiLSTM’s hyperparameters are 
fine-tuned for improved predictive accuracy and 
generalization. 

By integrating GWO with BiLSTM, we achieve 
a robust and efficient framework for time-series 
prediction and sequence modeling tasks. The 
optimized BiLSTM model, tuned using GWO, 
illustrates superior performance in terms of 
accuracy, convergence speed, and computational 
efficiency in comparison to previous methods. 

Results 

We tested our model’s ability to handle various 
activity states using a recommended classifier. The 

data were divided into testing and training sets. 
To ensure robust evaluation, we employed 5-fold 
cross-validation stratified by student (subject). 
This technique allows us to assess the model’s 
performance and achieve a reliable validation set. 

We compared four different models on data 
from smartphone accelerometers. The analysis 

revealed that the BiLSTM-GWO algorithm 
outperformed the others. It had the fastest 
processing speed and fewest parameters and 
delivered the best results. This demonstrates 
the effectiveness of our methodology for smart 

grid applications that utilize accelerometers in 
cell phones to predict load signals in real time. 

We had four similar methods: Bi-LSTM, LSTM 
with the GWO algorithm, Bi-LSTM with the 
GWO algorithm, and an optimized version of 
Bi-LSTM with the GWO algorithm. We named 

them Model 1, Model 2, Model 3, and Model 4, 
respectively 

To assess a model’s effectiveness, we analyzed 
its specificity, sensitivity, and accuracy. These 
metrics present insights into the overall number 
of accurate predictions. Table 3 compares the 
results obtained from applying our methods to the 
WISDM and UCI databases. The table showcases 
the model’s F1-score, Recall, and precision for 
different activity classes in the UCI dataset. 

Interestingly, the accuracy for “Walking 
upstairs” and “Walking downstairs” is lower 
than that for other activities. Additionally, these 
two classes are more likely to be misclassified 
compared to other combinations. In contrast, 
the model achieves the highest accuracy for the 
“Lying” state. These observations suggest that 
the model performs well for stationary activities 
but may struggle to differentiate between similar 
movement patterns like walking downstairs and 
upstairs. Nonetheless, the overall performance 
demonstrates  the  model’s  robustness  across 

 

Table 3: Comparison of the outcomes achieved from the suggested approach with similar models for the average of multiple replicate 

groups of 5-fold, separately for UCI and WISDM data. 

Dataset Strategy  
Accuracy 

 
Specificity 

                     AVG. of 5-fol 

Sensitivity 

ds  

Precision 
 

F1-measure 

UCI Model 1 0.9402 0.9505 0.9451 0.9437 0.9417 

 Model 2 0.9507 0.9605 0.9554 0.9531 0.9519 

 Model 3 0.9650 0.9756 0.9705 0.9685 0.9663 

 Model 4 0.9805 0.9912 0.9856 0.9833 0.9810 

WISDM Model 1 0.9253 0.9354 0.9308 0.92875 0.9260 

Model 2 0.9354 0.9456 0.9408 0.93875 0.9361 

Model 3 0.9507 0.9606 0.9554 0.95375 0.9518 

Model 4 0.9656 0.9758 0.9707 0.9685 0.9674 
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various activity states. Similar performance 
metrics were calculated for the second dataset 
(WISDM) but with some excluded human 
actions. These activities might not be relevant 
to the educational setting where the model is 
intended for use. However, the excluded actions 
did not significantly impact the overall accuracy, 
as the standard deviation remained low. 

Within the WISDM dataset, “Catch,” 
“Kicking,” and “Sitting” were classified with 
higher accuracy compared to other classes. On the 
other hand, “Drinking” and “Clapping” activities 
displayed lower accuracy. These results present 
significant insights into the model’s strengths 
and weaknesses in recognizing different human 
activities. 

A comparison of the performance of three 
similar models with the proposed method, Model 
4, on two datasets, UCI and WISDM, based on 
all estimated metrics shows that Model 4 has 
significantly improved most metrics compared to 
the other models (Figure 3). These results indicate 
that using Model 4 can enhance accuracy, recall, 
F1-score, and other evaluation indices, making 
it an effective method for analyzing UCI and 
WISDM data. 

Moreover, Figure 4 presents the confusion 
matrix from the classification of activities in 

the WISDM Activity Recognition dataset. This 
matrix evaluates the performance of the proposed 
BiLSTM-GWO model, where each row represents 
the predicted activity, and each column represents 
the actual activity. The diagonal cells indicate 
correctly predicted instances for each class, while 
off-diagonal cells represent misclassifications. 

The model demonstrates high accuracy 
for activities such as “Brush Teeth” (Br_Tth), 
“Catch” (Ctc), and “Kicking” (Kik), as reflected 
by their strong diagonal values. However, 
there is some confusion between similar 
activities, particularly those that involve similar 
movements. For example, the “Sitting” (Sit) 
class shows misclassifications with activities 
like “Typing downstairs” (Dwn_Str), indicating 
a challenge in distinguishing between static 
postures and subtle movements. Overall, the 
model performs well across various activities, but 
further refinement could reduce misclassification 
in similar categories. 

Evaluating the model’s accuracy necessitates 
verifying metrics like the Area Under the Curve 
(AUC) of the Receiver Operating Characteristic 
(ROC) curve. Widelyadoptedcriteriaandreference 
points for assessing students’ health and physical 
activityofferdependablemeasuresforcomparison. 
Harmonizing the ROC curve’s results with these 

 

 

Figure 3: Model 4 outperformed three similar models on UCI and WISDM datasets, showing significant improvements in accuracy, recall, 

and F1-score. This highlights its effectiveness in data analysis. 
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Figure 4: Confusion matrix for the WISDM Activity Recognition dataset classification, showing the distribution of correctly and incorrectly 

predicted activity categories. 
 

established benchmarks enhances both reliability 
and consistency. To guarantee the accuracy and 
dependability of AUC measures for student 
activity and physical health evaluation, it is vital 
to conduct separate validation studies that utilize 
a variety of data sources. These studies should 
compare the findings to established standards 
and consider longitudinal data analysis. Figure 5 
depicts the generated ROC charts for both 
datasets, visualizing the model’s performance 
in classifying undetectable acceleration signals 
from smartphones. The estimated AUC values 
suggest the model’s proficiency in evaluating 
both student activities and physical health. 
Moreover, Figure 5 compares the performance of 
the GWO optimization method for the BiLSTM 
architecture using the ROC curve against the 
genetic algorithm (GA) and particle swarm 
optimization (PSO) methods. The GWO method 
outperformed the genetic algorithm (GA) and 
particle swarm optimization (PSO) methods, 
effectively fine-tuning the BiLSTM parameters 
better than the other two algorithms. 

Discussion 

This paper proposes optimizing the BiLSTM 
architecture’s hyperparameters using the GWO 
algorithm. The proposed GWO-BiLSTM deep 
learning technique classifies student movement 
data obtained from smartphone accelerometers 
to recognize different activities. Hence, our 
strategy outperforms existing approaches like 
deep decision fusion (30), LGSRNet (31), CNN 
variants (32, 33, 35-38), and methods based on 
handcrafted features (33). Table 4 provides a 
comparative analysis of the proposed method 
versus previous research using the WISDM 
and UCI datasets. The findings demonstrate 
our model’s superior precision, achieving 
the highest accuracy among the compared 
methods. 

The  GWO-BiLSTM  model  demonstrates 
significant advantages over other approaches for 
recognizing student physical activities. Compared 
to CNNs, GWO-BiLSTM excels when dealing 
with time-series signals like student movement 
data, where CNN performance can be limited. 
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Figure 5: Performance comparison of the GWO optimization method for the BiLSTM architecture using the ROC curve, against the GA 

and PSO methods, is shown in the left image for UCI dataset analysis, and in the right image for WISDM dataset analysis. 

 

 

Table 4: A comparative evaluation of the proposed approach against other methods, using the WISDM and UCI datasets 

Ref. Data Accuracy Strategy 

Xiao et al. (10) UCI 97.56% Bayesian-BiLSTM 

 WISDM 97.30%  

Zhang et al. (30) UCI 97.81% Deep decision fusion 

 WISDM 85.00%  

Zheng et al. (31) UCI 97.32% LGSR-Net 

Li et al. (32) UCI 97.12% Improved features and CNN structure 

Friday et al. (33) UCI 96.90% Hand-crafted attributes and CNN 

Kolosnjaji et al. (34) UCI 96.17% PCA and Transfer learning model 

Jiang et al. (35) UCI 95.25% CNN structure 

Kim et al. (36) UCI 95.18% CNN structure 

Zheng et al. (37) UCI 94.79% CNN structure 

Wan et al. (38) UCI 93.21% CNN structure 

Proposed model UCI 98.10% GWO-BiLSTM 
 WISDM 97.59%  

 

GWO-BiLSTM also surpasses the Handcrafted 
Features approach. This highlights the strength 
of deep learning models in automatically and 
flexibly extracting knowledge from complex 
data, eliminating the need for time-consuming 
and error-prone manual feature engineering. 

Furthermore, GWO-BiLSTM exhibits 
superior accuracy compared to LGSRNet and 
Deep Decision Fusion techniques. This suggests 
its superior ability to handle intricate and 
diverse datasets, potentially due to its enhanced 
capacity to integrate and utilize large amounts 
of data for informed decision-making. Overall, 
GWO-BiLSTM offers superior performance in 
accurately recognizing various student physical 
activities, especially when dealing with dynamic 
signals and time-series sequences. 

Moreover, edge computing utilizes devices like 
smartphones, edge servers, or Internet of Things 
(IoT) nodes for local processing and inference. 
This approach often requires fewer resources 

compared to centralized cloud servers. Therefore, 
GWO-BiLSTM is well-suited for edge computing 
tasks demanding low processing power, enabling 
real-time classification on resource-constrained 
devices. The GWO-BiLSTM strategy consists of 
two key components: 1) This component excels 
at automatically extracting features from raw 
accelerometer information, eliminating the need 
for human intervention in feature engineering, 2) 
This optimization procedure combines existing 
knowledge with newly acquired information to 
identify the optimal parameters for the BiLSTM 
network. Notably, a GWO approach can be used 
for offiine parameter optimization by predicting 
the probability distribution of successful 
optimization. This allows the GWO-BiLSTM 
algorithm to run offiine. Several promising 
avenues exist for further research. 

One of the main limitations we faced in this 
research was the challenge of working with the 
available datasets. The small size of the UCI 
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HAR and WISDM datasets, with only 30 and 51 
participants may not adequately represent the 
broader population, particularly in applications 
where the model needs to be generalized to larger 
or more diverse groups. Additionally, while these 
datasets cover a range of activities, their scope is 
limited and does not include more complex or 
varied activities commonly encountered in real- 
world settings, such as multitasking or activities 
performed in uncontrolled environments. This 
restricts the model’s ability to recognize a wider 
spectrum of behaviors effectively. Moreover, the 
datasets are drawn from a small, specific group 
that may not fully represent diverse age, gender, 
or cultural demographics, which could affect the 
model’s generalizability. Lastly, these datasets 
primarily focus on accelerometer data, with 
limited use of other sensors, such as gyroscopes 
and magnetometers. Incorporating multiple 
sensors could improve accuracy and provide 
deeper insights into activity recognition. 

In addition, in many educational settings, 
particularly in underfunded schools, access to 
the necessary infrastructure for implementing 
smart health monitoring systems may be 
limited. Schools may require investments in 
smart devices, stable Internet connections, and 
cloud-based processing solutions to fully utilize 
such systems. Partnerships with governmental 
bodies and private organizations could help 
bridge these gaps and ensure wider adoption. 
Another potential challenge is the cost associated 
with implementing such systems, particularly 
in providing the necessary smart devices and 
infrastructure. However, collaborations with 
educational institutions and securing funding 
from government or private organizations could 
offset these costs and make the implementation 
more feasible. 

The broader implications of this study extend 
beyond the student population, as the framework 
can be adapted to other domains such as 
healthcare for monitoring patient recovery, fitness 
tracking for athletes, or even workplace health 
management. The edge computing integration 
allows for real-time analysis and decision- 
making, which is crucial in these applications 
for timely interventions and personalized health 
monitoring. This adaptability makes the model 
relevant across diverse contexts, including smart 
city initiatives and elderly care systems. 

We  fine-tune  the  hyperparameters  of 

the BiLSTM model by experimenting with 
different configurations and settings. We 
aim to incorporate techniques that adapt to 
changing training parameters. This may involve 
learning rate schedules or automated adjustment 
systems based on model performance over time. 
Incorporating data from additional sensors like 
magnetometers and gyroscopes may provide a 
more comprehensive understanding of student’s 
well-being and physical movements. Ultimately, 
we plan to implement the proposed system in 
a real-world setting and gather user feedback. 
This allows us to refine the model, improve its 
usability, and address any potential issues. 

Conclusion 

This research presents a robust framework for 
identifying student activities using smartphone 
accelerometer data, employing a BiLSTM-GWO 
(Bidirectional Long Short-Term Memory with 
Grey Wolf Optimizer) model. The integration of 
deep learning techniques with edge computing 
allowed for real-time health monitoring, ensuring 
timely interventions and personalized analysis 
of students’ physical activity and well-being. 
The proposed model demonstrated significant 
improvements in terms of accuracy, sensitivity, 
precision, and F1 score when compared to 
traditional machine learning approaches and 
state-of-the-art deep learning methods. The 
application of GWO optimization enhanced the 
model’s efficiency, providing superior results 
in recognizing complex activity patterns from 
accelerometer data. The broader implications 
of this study extend beyond student health 
monitoring. The versatility of the BiLSTM-GWO 
model enables its adaptation to several domains, 
including healthcare, fitness tracking, and 
workplace health management. The integration 
of edge computing facilitates fast, local analysis, 
which is essential for real-time applications, 
making the system suitable for broader use in 
smart cities, elderly care, and other dynamic 
environments. By incorporating this system, 
institutions can promote healthier lifestyles, 
prevent health issues, and foster better mental 
and physical well-being. 

Future research should explore adapting the 
proposed framework to other populations, such 
as the elderly or individuals with special needs, 
to better capture diverse physical activities and 
health requirements. Additionally, integrating 
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additional sensors, such as gyroscopes and 
magnetometers, could provide more detailed 
data, improving accuracy and expanding the 
range of recognizable activities. Incorporating 
online learning algorithms would allow the 
system to continuously update and improve its 
performance based on new data, enhancing its 
adaptability across different environments. Lastly, 
real-world implementations and user feedback 
could offer valuable insights into further refining 
the model and enhancing its practical usability, 
paving the way for broader adoption of smart 
health monitoring systems. 

Accessibility of Data and Resources 

The data used in this research comes from 
freely accessible online repositories. All the 
data we analyzed or generated is included in 
the article and its additional files. The data 
sources are from WISDM (http://www.cis. 
fordham.edu/wisdm/) and UCI datasets 
(http://archive.ics.uci.edu/dataset/240/hum 
an+activity+recognition+using+smartphones). 
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