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Abstract
Distinguishing P300 signals from other components of the EEG is one of the most 
challenging issues in Brain Computer Interface (BCI) applications, and machine learning 
methods have vastly been utilized as effective tools to perform such separation. Although 
in recent years deep neural networks have  significantly improved the quality of the above 
detection,  the significant similarity between P300 and other components of EEG in parallel 
with their unrepeatable nature have led to P300 detection, which are still an open problem 
in BCI domain. In this study, a novel architecture is proposed in order to detect P300 signal 
among EEG, in which the temporal learning concept is engaged as a new substructure 
inside the main Convolutional Neural Network (CNN). The above Temporal Convolutional 
Network (TCN) may better address the problem of P300 detection, thanks to its potential 
in involving time sequence properties in modelling of these signals. The performance of 
the proposed method is evaluated on the EPFL BCI dataset, and the obtained results are 
compared in two inter-subject and intra-subject scenarios with the results of classical CNN 
in which temporal properties of input are not considered. Increased True Positive Rate of 
the proposed method (an average of 4 percent) and its accuracy (an average of 2.9 percent) 
in parallel with the decrease in its False Positive Rate (averagely 3.1 percent) shows the 
effectiveness of the TCN structure in promoting the detection procedure of P300 signals in 
BCI applications.
Keywords: EEG signals, P300, Convolutional Neural Networks, Temporal Convolutional 
Networks, Deep Learning, Brain-Computer Interface.
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Introduction 

Brain Computer Interface (BCI) is a form of 
human-machine paradigm which may assist 
people in neuromuscular disorders (1) such 

as cerebral palsy, multiple sclerosis, amyotrophic 
lateral sclerosis (ALS), muscular dystrophies, to 
communicate with other persons or control their 
environment (2, 3).

Electroencephalogram (EEG) is the most 
common electrophysiological signal which is utilized 
in non-invasive BCI systems (4). A BCI system often 
measures specific components of EEG activity 
and employs the results as a control signal (5). The 
most important type of the above components is 
Event-Related Potentials (ERPs) which arise as 
brain response (6) to the external visual, tactile, or 
auditory stimuli and are widely employed in BCI 
applications (1, 7).

P300 ERP is a positive peak in the EEG and often 

appears about 300 ms after related events happen (8, 
9). Based on this fact that P300 BCI users need no 
special training (10, 11), this type of ERP signals is 
increasingly applied in BCI systems. 

Farwell and Donchin proposed the use of the P300 
based BCI in 1988 in the form of “oddball” response 
(12, 13) which mainly includes a square matrix (i.e. 
6×6) of characters such as numeric, alphabetic, and 
underline symbols (14). This matrix is displayed on 
a computer screen, and, subsequently the, symbols 
are flashed in order to evoke a P300 response for the 
predefined word’s characters (15).

Unfortunately, the P300 signal amplitude is 
much lower than the background EEG activity; 
therefore, low Signal to Noise Ratio (SNR) is the 
most challenging issue for accurately detecting the 
P300 signal (16). The simplest preprocessing method 
for detecting P300 signal is bandpass filtering of raw 
EEG signals (17). Make use of averaging is another 

Please cite this paper as:
Mardi M, Keyvanpour MR, 
Shojaedini SV. Temporal 
Convolutional Learning: A New 
Sequence-based Structure to 
Promote the Performance of 
Convolutional Neural Networks in 
Recognizing P300 Signals. J Health 
Man & Info. 2021; 8(1): 68-77.



69J Health Man & Info, January 2021, 8(1) 

Temporal Convolutional Learning for Recognizing P300 Signals

naïve technique to amplify the P300 component 
and gradually improve the SNR challenge. However, 
averaging also decreases the bit rate and distorts the 
ERP waveform (18).

Recently, P300 signal detection by using artificial 
intelligence are used to improve SNR without losing 
useful information. Therefore, a wide variety of 
linear and nonlinear machine learning techniques 
have been applied to classify the P300 signals in 
BCI. For instance, the linear methods, such as 
Linear Discriminant Analysis (LDA) (17), Bayesian 
classification (3) and Support Vector Machine (SVM) 
(19), have widely been employed in BCI applications. 
Despite their ease of use, they are weak in the face of 
complex real-world problems such as overfitting (20).

Artificial Neural Networks (ANNs), as nonlinear 
techniques, have been utilized to address BCI 
detection problem which leads to increased SNR and 
detection of P300 signal (21). The main drawback of 
such techniques is their high sensitivity to quantity 
and quality of features which are extracted from the 
input data (22).

In recent years, the ability of so-called Deep 
Neural Networks (DNNs) in many applications of 
recognition and classification in the field of medical 
signals and images has been well demonstrated. 
Accordingly, the use of this tool in detection of P300 
signal has become an important research topic in 
BCI domain. DNNs use the recorded signal directly 
as their input data and are capable of extracting high-
level features automatically (22). The most popular 
DNNs methods, which have been used in the BCI, 
are the Convolutional Neural Networks (CNN) and 
Restricted Boltzmann Machines (RBM) (23).

Despite the considerable improvement that 
CNNs has made in the detection of P300 signals, 
in many cases this type of networks have not been 
able to provide sufficient and stable accuracy in their 
performance.

Conventional CNN stablishes spatial relationships 
in order to model the nature of its input signal, 
but unfortunately it does not inherently have a 
mechanism in order to model the temporal sequences 
at its input. However, the nature of P300 signals is 
mainly time- dependent; therefore, in this paper, 
an upgraded spatial-temporal CNN is presented 
to improve P300 signal detection. In the proposed 
method, causal convolutional concept has been 
utilized beside classical CNN to take advantage of 
temporal relationships in P300 signals which leads 
to more accurate results in distinguishing P300 and 
non-P300 signals. 

The rest of the paper is organized as follows: Section 

2 includes description of the proposed protocol. 
In Section 3, the results of applying the proposed 
structure for P300 detection are demonstrated. In 
Section 4, the obtained results are compared to some 
state-of-the-art structures by using their effective 
indexes. The conclusion is presented in the last 
section of the paper.

Materials and Methods
The composition of many natural signals is 
hierarchical, and deep neural networks (DNNs) may 
lead to better modelling of more complex signals than 
shallower neural networks in such a way that higher-
level features are achieved by composing lower-level 
ones (24, 25).

2.1. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a 

deep learning approach for successful and robust 
training, composed of several interconnected 
layers (26, 27). Each layer consists of neurons that 
are the essential parts of learning and extracting 
features from the input layer (26). CNN uses spatial 
relationships to reduce the number of parameters that 
must be learned, thus improving general feed-forward 
backpropagation training (27). The principal part 
of CNN is the convolutional layer, which performs 
complex computations. The convolutional layer has 
mainly a set of learning filters; each of them slides over 
the input to perform dot products between the filter‘s 
weights and the input, and then passes it through a 
forward path (7). Usually, following convolutional 
layers, fully-connected (FC) layers are employed to 
perform final classification. Some other layers, such 
as the non-linearity, pooling, and normalization, may 
also be applied in CNN, besides convolutional and FC 
layers (24). Typically, a non-linear activation function 
is utilized after each convolutional or FC layer like a 
sigmoid, hyperbolic tangent or a rectified linear unit 
(ReLU), which lead to faster training (24, 28). 

By applying the convolution kernel on the input 
signal, several feature maps are obtained (29). Suppose 

is  feature map in  convolutional layer (30) as 
follows:

                  (1) 

In which  demonstrates  layer corresponding 
weight matrix,  represents the convolution 
symbol,  and f (.) show the bias and non-linear 
activation function, respectively. Usually, after 
the convolutional procedure, the pooling layer is 
employed to perform down-sampling which is 
demonstrated as bellow (30, 31): 
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                               (2)
Where pooling(.) indicates the rule of down-

sampling function,  denotes the pooling‘s 
weight. 

In the next step, the output of the fully-connected 
layer may be computed as is demonstrated in equation 
below (32): 

                           (3)

The softmax function is applied after the ultimate 
FC layer in order to normalize its output and give a 
probability over all classes (26). Let  be  neuron 
output in the final FC layer; then, the above function 
may generate the final classification probability 
as described in equation (4), in such a way that the 
largest  shows the most predicted class (26):

                                    (4)

2.2. Optimizer Algorithm
Assume  is a differentiable stochastic scalar 

function with parameter , and  is the 
expected value of this function, which should be 
minimized to make error least (33). Furthermore, 
illustrates the changes in the above function in the 
form of the gradient concept as follows (34):

                                  (5)

In which  denote realizations of 
the stochastic function at subsequent time steps 

. Adam’s update rule chooses the step sizes 
carefully; therefore, it updates  and , which are 
exponential moving averages of the gradient (first 
moment estimate) and the squared gradient (second 
raw moment estimate), respectively (33, 35). 

                    (6)

                     (7)

Where are exponential decay 
rates for the moment estimates which control the 
exponential decay rates of  and moving averages; 
additionally,  represents  . Setting the initial 
value to 0 for moving average vectors causes moment 
estimates biased towards zero; therefore, to counteract 
this biasness, t and t may be applied as represented 
in equations (8-9), respectively (33, 34).

                                     (8)

                                        (9) 

Finally, equation (10) indicates updating of , in 
which  represents step size and  demonstrates the 

smoothing term which avoids division by zero.
                              (10) 

2.3. Temporal Convolutional Neural Networks
As mentioned in previous section, although CNN 

may express spatial connections in the data well, it 
is mainly weak in modeling information related to 
time sequence. However, the nature of our signals 
is completely time dependent. Therefore, Temporal 
Convolutional Networks (TCN) may be useful to 
learn the temporal dependencies (36). This network 
is based on the three basic comments on Fully 
Convolutional Network (FCN), causal convolution, 
and dilated convolution. Firstly, by using zero 
padding in the FCN layer, the output sequence 
becomes the same as the input sequence length, 
assuring that the data length is unchanged (37). In 
the next step, causal convolution, the output at time 
 is convolved only with the elements corresponding 

to time  and earlier in the previous layer. Therefore, 
there is no information leakage from the future to 
the past. Assume  and  are the input and output 
sequences, respectively. Furthermore,  is a 
convolution filter with size . Equation (11) indicates 
that the output sequence  is well-defined over each 
time step, and prediction only depends on input 
x≤t (38).

    (11)

However, simple causal convolution may only look 
back at history with size linear in the network‘s depth 
(37). Dilated convolution is a method that allows for 
receptive fields exponential to the number of layers, 
so the  level dilated convolutional layer may be 
represented as (38):

   (12)

In which  is the dilation factor that can be set as 
 to obtain an exponentially large receptive 

field. By setting a proper size of filter and number 
of layers,  may depend on the full historical 
interactions x≤t. Figure 1 illustrates dilated causal 
convolution with dilation factors D=1,2,4 (39).

Based on above descriptions and as represented 
in Figure 2, the proposed method is composed 
of two parts to take advantage of the EEG data‘s 
temporal and spatial information. For this purpose, 
the TCN section is utilized, which gets the input 
layer‘s temporal information and consists of four 
dilated causal convolutional layers and four ReLUs as 
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activation functions between them. Then, the output 
of this part is fed to the CNN section. The second 
section is composed of two convolutional layers and 
two ReLUs. Finally, for classification, the CNN part‘s 
output is fed to the FC layer, which computes the 
score of each class and classifies the signal in the class 
with a high score.

Results
The proposed method was implemented by utilizing 
Python 3 Keras framework and then examined 
on a testbed which was prepared by using Google 
Colaboratory with NVIDIA Tesla T4 GPU allocation. 

The EPFL BCI dataset was used to evaluate the 
performance of the proposed method. Nine volunteers 
were enrolled to record the above data, which 
are mentioned in experiments with the names of 
subjects 1-9. Among them, subjects 6-9 were healthy, 
and the others had some disabilities (Figure 3).  
For each subject, six images, including a television, 
telephone, lamp, door, window, and radio, were 
displayed on a laptop screen. Four recording sessions 
were considered for each subject, and each session 

consisted of one run for each of the six images.
Data for subject 5 is not in the results because 

the subject‘s consciousness level fluctuated strongly. 
Despite the help of a speech therapist to communicate 
with subject 5 during the experiments, it was not clear 
whether he understood the instructions given before 

Figure 1: Dilated causal convolution with dilation factors 1, 2 
and 4

Figure 2: The structure of the proposed method

Figure 3: Description of the pseudocode of the proposed method
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the experiments. Therefore, in studies that have used 
the EPFL dataset such as (3, 7, 12), no results have 
been reported for subject 5. Some other descriptions 
of the data used are shown in Table 1 and in more 
detail in (3).

The EEG signals were recorded at the 2048 Hz 
sampling rate from 32 electrodes placed on the eight 
subjects‘ scalp according to standard positions of 
10-20 international system. A Biosemi Active Two 
amplifier was employed to convert analog to digital 
EEG signals and amplify them.

For each subject, EEG signals were recorded 
in four separate sessions and six runs. First, each 
subject‘s data is pre-processed, including referencing, 
filtering, down- sampling, signal trial extraction, 
windsorizing, and normalizing, respectively.

In the next and main step, the CNN and TCN 
methods were applied on pre-processed data 
belonging to each subject. Four-fold cross-validation 
was used. Therefore, the data of each session were 
used once as a train, validation, and test data. In each 
fold, the data of two sessions were used for training, 
and the data of the other two sessions were used in 
order to validate and test, respectively.

Through trial and error, the best configuration 
and hyperparameters were obtained for the proposed 
structure, as described in Table 2. The weights were 
initialized randomly for the training procedure 
employing Adaptive moment estimation optimizer 
with a learning rate of 1e-3 and decay rate of 1e-6. 

Good default values for the tested machine learning 
problems proposed in (33) are: =0.001, =0.9 ,
=0.999 and  =10−8. The ReLU activation function was 
employed after each layer, and L2-regularization with 
a rate of 1e-6 on the weights was applied for all the 
layers in order to control the overfitting problem.

As shown in (40), using a convolutional layer 
with stride makes network structures simple without 
accuracy loss. Therefore, convolutional layers with 
stride are used instead of applying a pooling layer. 

It is certain that the proposed method of this 
paper, like its competitors, still faces the errors in 
detecting non-P300 signal instead of P300 and vice 
versa. The reason for this is the striking similarity of 
these two types of signals in some cases; for example, 
some sample signals from subjects 1, 4 and 8 are 
shown in Figure 4. These figures obviously show no 
considerable difference between two recorded EEG 
signals belonging to P300 and non-P300 components. 

Eventually, for each subject, standard parameters 
were applied to compare the efficiency of the 
examined methods, including True Positive Ratio 
(TPR), False Positive Ratio (FPR), and accuracy of 
the classification. The obtained results are reported in 
Table 3. Interpretation and comparison of the results 
are made in two scenarios, inter-subject and intra-
subject, as described below.

Inter-subject Scenario
In this scenario, the effectiveness of the proposed 

Table 1: Details of EPFL BCI 
Status Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6-9

A A A A NA A
Diagnosis Cerebral palsy Multiple 

sclerosis
Late-stage 
amyotrophic 
lateral sclerosis

Traumatic brain 
and spinal-cord 
injury, C4 level

Post-anoxic 
encephalopathy

Able-body

Age 56 51 47 33 43 30±2.3
Sex M M M F M M
A: subject’s data is available in dataset. NA: subject’s data are not available in dataset

Table 2: Description of main parameters of proposed method and its deep based alternatives
TCN+CNN CNN

Number of layers 8 5
Input layer 1024×1 32×32×1
Dilated Causal Convolution 1 1-D conv (32×2), d=1, Stride=1
Dilated Causal Convolution 2 1-D conv (20×5), d=2, Stride=1
Dilated Causal Convolution 3 1-D conv (32×2), d=1, Stride=1
Dilated Causal Convolution 4 1-D conv (20×5), d=2, Stride=1
Convolution 1 1-D conv (128×2), Stride=1 2-D conv (5×5), 20, MaxPool (2×2)
Convolution 2 1-D conv (128×2), Stride=1 2-D conv (5×5), 50
Convolution 3 2-D conv (2×2), 32
Output Softmax Softmax
d: Represents the dilation rate
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and alternative methods in the same subjects was 
compared. Based on TPRs, the proposed method 
showed a better performance in all subjects than its 
alternative method. The most notable superiority 
occurred in subject 6, in which 

the proposed scheme increased TPR by almost 
8 percent. Moreover, the minimum amount of TPR 
improvement occurred in subject 1 by 0.72 percent 
(i.e. there is no meaningful difference between the 
obtained TPRs). It is worth noting that the average 
improvement was almost 4 percent in terms of TPR.

Likewise, the results showed that the proposed 
method performed better than its alternative in terms 
of FPR. The minimum and maximum improvement 
in the proposed method‘s FPR values against the 
CNN method was 0.23 percent and 8.65 percent, 
respectively, over subjects 8 and 3. Investigation 
of the proposed method‘s superiority over the 
CNN among other subjects, yielded an average 
improvement of 3.1 percent in detecting false 
signals.

Finally, the values obtained from accuracy 
confirmed the better performance of the proposed 

method than its alternative. Therefore, this method‘s 
minimum and maximum improved accuracy values 
arose from subjects 1 and 3 by 0.36 percent and 8.31 
percent, respectively. The moderate superiority of our 
method versus CNN was obtained as 2.9 percent.

Intra-subject Scenario
In this scenario, the best results obtained from 

the examined methods (i.e. CNN and TCN) were 
compared in the subject under examination. As Table 3  
show that the value of the TPRs of the proposed 
method was superior compared to the CNN method 
in all subjects. The best TPR was obtained with the 
proposed method was 87.05% over subject 8, which 
is 4.45% better than the best TPR value obtained by 
applying classical CNN scheme. 

Similarly, in terms of the false positive rate, the 
proposed method showed a significant advantage 
over its alternative in such way that its best FPR was 
equal to 8.9 percent (over subject 3), which was 3.2% 
less than the best result of the CNN (over subject 8).

Ultimately, the classification accuracy in 
the proposed method for all of the subjects was 

Figure 4: EEG recorded signals belong to subject 1,4 and 8, respectively; (a), (c) and (e) are P300 signals. (b), (d) and (f) are non-P300 
signals

Table 3: The parameters over each subject are in percentage (data for subject 5 is not considered in the results)
Subject Method TPR FPR Accuracy  Subject Method TPR FPR Accuracy
1 CNN 62.32 16.66 82.12 6 CNN 61.31 14.45 81.50

TCN 63.04 13.62 82.48 TCN 69.34 12.99 84.06
2 CNN 60.43 21.58 75.41 7 CNN 71.32 14.54 83.10

TCN 64.49 16.52 80.31 TCN 77.53 9.85 88.04
3 CNN 71.32 17.62 80.53 8 CNN 82.60 12.17 86.95

TCN 77.94 8.97 88.84 TCN 87.05 11.94 87.88
4 CNN 66.9 13.95 82.85 9 CNN 70.14 15.82 81.84

TCN 68.34 9.92 86.45 TCN 71.64 15.52 82.33
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outperformed. For instance, the best accuracy 
was achieved over subject 3, by using the proposed 
method, equal to 88.8 percent. However, the best 
value achieved by using the classical CNN was almost 
87 percent, over subject 8.

Discussion
The recorded EEG signals were captured from nine 
volunteers including four healthy persons in parallel 
with five patients (for the reasons described in Section 
2, data for subject 5 was not considered in the results); 
then, they were classified. Because of the nature of 
the EEG signals, training and testing procedures 
were separately performed for each volunteer. The 
four-fold-cross-validation method was applied to 
evaluate the performances of data sessions in the test 
procedure. Based on these tests, the results showed 
that the proposed method was generally performed 
superior to its alternative in all subjects and for all 
evaluation parameters (i.e. TPR, FPR and accuracy). 

However, in addition to the overall improvement 
of the results, there is another parameter that is crucial 
in evaluating the performance of each method. This 
is the degree of stability of the results of the method, 
which means how much the obtained results are 
concentrated among different folds. Accordingly, in 
this section, we used the variation range criterion of 
fold results to examine the aforementioned stability. 

Figure 5 demonstrates that the concentration 
of accuracies obtained from different folds in the 
proposed method was significantly better than those 
obtained from the alternative scheme.

It is worth noting that this advantage was more 
significant for some subjects than others. For instance, 
exploring the results of the first subject shows that 
variation ranges of the accuracy for the proposed 
and basic structures were equal to 1.94% and 3.9%, 
respectively. These values showed the accuracies 
obtained from the proposed structure were more 
compact (81.64% to 84.54%) than the results of the 
alternative structure (79.83% to 84.17%) during the 
same folds by 1.96%. 

The variation ranges obtained for the second subject 
were 5.21% and 11.6%, respectively, corresponding to 
the proposed and alternative methods. The results 
of accuracies during the same folds determined that 
the proposed method was more focused (80.31% to 
85.03%) than its alternative (75.41% to 83.57%).

The results of the proposed method were more 
stable for the third subject according to variation 
ranges, so that its advantage over its alternative 
reached 17.4%. In this case, the variation ranges of the 
proposed and alternative method were 0.78 percent 

and almost 18.18 percent, respectively. The four-fold 
accuracy ranges were 86.94% to 88.84% and 80.53% 
to 90.56%, respectively, belonging to the proposed 
and alternative methods.

Investigating the results of subject four also 
displayed more concentration of the proposed method 
against classical CNN, in such a way that variation 
ranges of the proposed and alternative accuracy were 
equal to 0.6 percent and approximately 3.5 percent, 
respectively. In this case, the accuracy values were 
84.76% to 86.45% and 81.65% to 86.19%, belonging to 
the proposed and its alternative method, respectively.

In a similar manner, the accuracy values of subject 
6 during the same folds were 84.06% to 87.19% and 
81.5% to 87.8%, corresponding to our proposed 

Figure 5: The concentration of accuracies obtained from 
different folds in the proposed method and its alternative (data 
for subject 5 is not considered in the results)
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method and its alternative, respectively. The values 
of variation range represented the advantage of the 
proposed method over its alternative by almost 5.5 
percent. 

For subject 7, the variation ranges equal to 0.49% 
and 7.24% were obtained from the proposed method 
and its alternative, respectively. Therefore, the 
proposed method was more concentrated (87.06% to 
88.52%) than the CNN method (83.1% to 89.13%) by 
6.75 percent.

The variation ranges achieved for subject 8 were 
0.62% and 4.27%, corresponding to the proposed and 
alternative algorithms. This subject‘s accuracy values 
from the proposed and alternative methods were 
90.24% to 91.9% and 86.95% to 92.01, respectively.

As proved by other subjects, by exploring the 
obtained values, the advantage of the proposed 
method for subject 9 was also observed. The variation 
ranges achieved from the proposed and alternative 
methods were almost 0.6 percent and 9.7 percent. The 
obtained accuracy variation values indicated that the 
advantage of our scheme (82.33% to 83.95%) over its 
alternative (78.5% to 85.94%) reached 9.1%.

Finally, the degree of focus of the accuracy 
was investigated in terms of two categories of data 
related to healthy and disabled subjects. Based on 
the numbers reported in the previous lines, it may 
be seen that the variances of the accuracies obtained 
from the proposed method with respect to the same 
parameter in the alternative method led to relatively 
corresponding numbers for all the tested subjects. 
Consequently, the focus of the proposed method 
compared to the classical CNN indicated that there 
was no significant correlation between the improving 
effect of the proposed method on the accuracy 
concentration and the nature of the data, (i.e., whether 
healthy or disabled).

Conclusion
In this study, a novel structure was proposed to 
promote deep neural networks‘ ability in detecting 
P300 components among recorded EEG in BCI 
systems. The proposed method causes the time 
sequence concept to be considered in constructing 
the model created by convolutional neural networks. 
This is done by adding an infrastructure called 
Temporal Convolutional Networks (i.e., TCNs) to the 
conventional CNN architecture, thus increasing its 
potential in detecting P300 signals that are temporal 
in their nature. To evaluate the effectiveness of the 
proposed structure, it was applied in a set of real 
dataset along with its classic alternative (CNN) in 
forms of inter-subject and intra-subject scenarios; 

then, the performance of the examined methods 
was compared in terms of TPR, FPR and accuracy 
parameters.

The above comparisons confirmed the superiority 
of the proposed method over it classic alternative 
in distinguishing P300 signal from other EEG 
components. Exploring the achieved TPR values 
confirmed that the proposed method performed 
almost 4% and 4.45% better than CNN based on 
inter-subject and intra-subject scenarios, respectively. 
Investigating obtained FPR values demonstrated that 
these superiorities were approximately 3% and 3.2%. 
In similar manner, the values obtained from accuracy 
confirmed the better performance of the proposed 
method than its alternative by 2.9% and almost 1% in 
inter-subject and intra-subject scenarios, respectively.

In terms of uniformity in the results obtained 
from different tests, the proposed method showed 
more stability than its alternative.

The variation ranges of the results obtained 
in several folds were computed in order to better 
demonstrate the stability, which showed the proposed 
method was more concentrated than CNN method 
among different examinations. Based on the above 
investigations, it may be concluded that the proposed 
method may be considered as a high potential 
candidate for P300 detection in BCI applications.
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