1. Hassanien AE, Azar A. Brain-computer interfaces. Switzerland: Springer. 2015. doi: 10.1007/978-3-319-10978-7 .
2. Bansal D, Mahajan R. EEG-Based Brain-Computer Interfaces: Cognitive Analysis and Control Applications. Germany: Academic Press; 2019..
3. Colwell KA, Ryan DB, Throckmorton CS, Sellers EW, Collins LM. Channel selection methods for the P300 Speller. J Neurosci Methods. 2014;232:6-15. doi: 10.1016/j.jneumeth.2014.04.009.
4. Sanei S, Chambers J. EEG Signal Processing, Centre of Digital Signal Processing, Cardiff University, UK. Publicação acadêmica, 1ª Edição, Elsevier. 2007;16.
5. Magee JC, Winhusen T. The coupling of nicotine and stimulant craving during treatment for stimulant dependence. J Consult Clin Psychol. 2016;84(3):230-7. doi: 10.1037/ccp0000054.
6. Shahriari Y, Erfanian A, editors. A mutual information based channel selection scheme for P300-based brain computer interface. 2011 5th International IEEE/EMBS Conference on Neural Engineering; 2011: p. 434–7.
7. Rosas-Cholula G, Ramirez-Cortes JM, Alarcon-Aquino V, Martinez-Carballido J, Gomez-Gil P, editors. On signal P-300 detection for BCI applications based on wavelet analysis and ICA preprocessing. 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference; 2010: IEEE. 10.1109/cerma.2010.48.
8. Selim AE, Wahed MA, Kadah YM, editors. Machine learning methodologies in P300 speller Brain-Computer Interface systems. 2009 National Radio Science Conference; 2009: IEEE.
9. Manyakov NV, Chumerin N, Combaz A, Van Hulle MM. Comparison of classification methods for P300 brain-computer interface
on disabled subjects. Comput Intell Neurosci. 2011;2011:519868. doi: 10.1155/2011/519868.
10. Santamaria-Vazquez E, Martinez-Cagigal V, Gomez-Pilar J, Hornero R. Asynchronous Control of ERP-Based BCI Spellers Using
Steady-State Visual Evoked Potentials Elicited by Peripheral Stimuli. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1883-92. doi: 10.1109/TNSRE.2019.2934645.
11. Kübler A, Botrel L, editors. Imagining the P300 Speller: Good idea or nonsense? 2019 7th International Winter Conference on Brain- Computer Interface (BCI); 2019.
12. Gu Z, Chen Z, Zhang J, Zhang X, Yu ZL. An Online Interactive Paradigm for P300 Brain- Computer Interface Speller. IEEE Trans Neural Syst Rehabil Eng. 2019;27(2):152-61. doi: 10.1109/TNSRE.2019.2892967.
13. Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI Competition 2003-Data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng. 2004;51(6):1073-6. doi: 10.1109/TBME.2004.826698.
14. Rakotomamonjy A, Guigue V. BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng. 2008;55(3):1147-54. doi: 10.1109/TBME.2008.915728.
15. Hoffmann U, Garcia G, Vesin J-M, Diserens K, Ebrahimi T, editors. A boosting approach to P300 detection with application to braincomputer interfaces. Conference Proceedings 2nd International IEEE EMBS Conference on Neural Engineering, 2005; 2005: IEEE. doi: 10.1109/cne.2005.1419562.
16. Liang N, Bougrain L, editors. Averaging techniques for single-trial analysis of oddball event-related potentials2008.
17. Mirghasemi H, Fazel-Rezai R, Shamsollahi MB. Analysis of p300 classifiers in brain computer interface speller. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:6205-8. doi: 10.1109/IEMBS.2006.259521.
18. Ang KK, Chin ZY, Zhang H, Guan C. Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs. Pattern Recognition. 2012;45(6):2137-44. doi: 10.1016/j.patcog.2011.04.018.
19. Cecotti H, Rivet B, Congedo M, Jutten C, Bertrand O, Maby E, et al. A robust sensorselection method for P300 brain-computer
interfaces. J Neural Eng. 2011;8(1):016001. doi: 10.1088/1741-2560/8/1/016001.
20. Shan H, Liu Y, Stefanov TP, editors. A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. IJCAI; 2018.doi: 10.24963/ijcai.2018/222.
21. Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y. A Survey on Deep Learning based Brain Computer Interface: Recent Advances and New Frontiers. arXiv 2019. arXiv preprint arXiv:190504149.
22. Kundu S, Ari S. MsCNN: A Deep Learning Framework for P300 Based Brain-Computer Interface Speller. IEEE Transactions on Medical Robotics and Bionics. 2019.
23. American Electroencephalographic Society guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 1991;8(2):200-2.
24. Kee C-Y, Ponnambalam SG, Loo C-K. Multiobjective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing. 2015;161:120-31. doi: 10.1016/j.neucom.2015.02.057.
25. Xu M, Qi H, Ma L, Sun C, Zhang L, Wan B, et al. Channel selection based on phase measurement in P300-based brain-computer interface. PLoS One. 2013;8(4):e60608. doi: 10.1371/journal. pone.0060608.
26. Krusienski D, Schalk G. Wadsworth BCI dataset (P300 evoked potentials). BCI Competition III Challenge. 2004.
27. Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell. 2011;33(3):433-45. doi: 10.1109/TPAMI.2010.125.
28. Hillyard SA, Kutas M. Electrophysiology of cognitive processing. Annu Rev Psychol. 1983;34:33-61. doi: 10.1146/annurev.ps.34.020183.000341.