Drug classification systems: Applications and characteristics

Document Type : Review

Authors

1 Professor, Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

2 Ph.D. Candidate in Medical Informatics, Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

3 Assistant Professor of Healthcare Services Management, Virtual School, Tehran University of Medical Sciences, Tehran, Iran

4 Instructor, Department of Health Information Technology, Ferdows school of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran M.Sc. in Health Information Technology, Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Introduction: The quality management and financial control of drugs have been considered as a priority for healthcare managers. The drug classification and coding systems, as an information management tool, could be beneficial. The review aims to extract the characteristics of the drug classification systems and identify their main applications in the drug management processes. Method: For this purpose, the library sources including e-databases PubMed, Scopus, Web of Science, and Google Scholar search engine, e-files, and specialized websites were searched using keywords “Drug”, “Classification system”, “Coding system”, and “Terminology” alongside their synonyms. The search results were limited to the drug classification systems that categorize drugs and pharmaceutical information using code sets with an appropriate granularity level.
 Results: Twenty-eight drug classification systems were included. Half of these systems are used internationally, and the others are used nationally. All included systems were divided into three categories, based on their features. The domain classification of systems includes human drugs, animal drugs, herbal medicines, dosage forms, drug side effects, and ingredients of medicinal products. Most of them are hierarchically designed. The code structure of these systems was mainly numerical, and some of them were alphabetical-numeric or alphabetical. They are mostly applied for unique identification, interoperability, statistics, pharmacovigilance and drug-related problems, marketing, and artificial intelligence methods.
 Conclusion: The drug classification systems are designed in different ways with respect to their applications. The development of multipurpose systems and provision of  efficient mapping among these systems could be beneficial to improve the drug management processes.
 

Keywords


1. Mikulic M [Internet]. Global spending on medicines 2010-2023. [Cited 24, February 2020]. Available from:https://www.statista.com/statistics/280572/medicine-spending-worldwide/
2. Dalton K, Byrne S. Role of the pharmacist in reducing healthcare costs: current insights. Integr Pharm Res Pract. 2017;6:37-46. doi: 10.2147/IPRP.S108047.
3. Hughes DA. From NCE to NICE: the role of pharmacoeconomics. Br J Clin Pharmacol. 2010;70(3):317-9. doi: 10.1111/j.13652125.2010.03708.x.
4. Lee JK, Alshehri S, Kutbi HI, Martin JR. Optimizing pharmacotherapy in elderly patients: the role of pharmacists. Integr Pharm Res Pract. 2015;4:101-11. doi: 10.2147/IPRP.S70404.
5. Sorenson C, Drummond M, Bhuiyan Khan B.Medical technology as a key driver of rising health expenditure: disentangling the relationship. Clinicoecon Outcomes Res. 2013;5:223-34. doi: 10.2147/CEOR.S39634.
6. Cimino JJ. Review paper: coding systems in health care. Methods Inf Med. 1996;35(4-5):273-84. doi: 10.1055/s-00381634682.
7. Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR. A systematic literature review of automated clinical coding and classification systems. J Am Med Inform Assoc. 2010;17(6):646-51. doi: 10.1136/jamia.2009.001024.
8. Chen Y, Zivkovic M, Wang T, Su S, Lee J, Bortnichak EA. A Systematic Review of Coding Systems Used in Pharmacoepidemiology and Database Research. Methods Inf Med. 2018;57(1):1-42. doi: 10.3414/ME17-05-0006.
9. The Global Language of Business: GS1 [Internet]. Product Classification in Healthcare. 2015; [Cited 12 August 2020]. Available from: https://www.gs1.org/sites/default/files/docs/healthcare/product_classification_in_healthcare_april_2015.pdf10. World Health Organization. Drug classification systems. In: Introduction to Drug Utilization Research. Geneva: World Health Organization;2003 p. 33-7.
11. Bodenreider O, Cornet R, Vreeman DJ. Recent Developments in Clinical Terminologies -SNOMED CT, LOINC, and RxNorm. Yearb Med Inform. 2018;27(1):129-39. doi: 10.1055/s-0038-1667077.
12. Pathak J, Chute CG. Analyzing categorical information in two publicly available drug terminologies: RxNorm and NDF-RT. J Am
Med Inform Assoc. 2010;17(4):432-9. doi: 10.1136/jamia.2009.001289.
13. Hunkler R [Internet]. THE UNIFORM SYSTEM OF CLASSIFICATION (USC). c2018. [Cited 15 April 2020] https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/the-uniformsystem-of-classification.pdf
14. Australian Digital Health Agency[Internet]. Australian Medicines Terminology: Concept Model and Business Use Cases. c2017.[Cited 12 August 2020]. Available from: https://www.healthterminologies.gov.au/learn
15. Goss FR, Zhou L, Plasek JM, Broverman C, Robinson G, Middleton B, et al. Evaluating standard terminologies for encoding allergy information. J Am Med Inform Assoc. 2013;20(5):969-79. doi: 10.1136/amiajnl-2012-000816.
16. Saitwal H, Qing D, Jones S, Bernstam EV, Chute CG, Johnson TR. Cross-terminology mapping challenges: a demonstration using medication terminological systems. J Biomed Inform. 2012;45(4):613-25. doi: 10.1016/j.jbi.2012.06.005.
17. van Mil JW, Westerlund LO, Hersberger KE, Schaefer MA. Drug-related problem classification systems. Ann Pharmacother. 2004;38(5):859-67. doi: 10.1345/aph.1D182.
18. World Health Organization. Collaborating Center for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment 2021. Oslo: Norway; 2021.
19. WHO. Collaborating Center for Drug Statistics Methodology. Guidelines for ATCvet classification 2021. Oslo: Norway; 2021.
20. Dahlin A, Eriksson A, Kjartansdottir T, Markestad A, Odensvik K. The ATCvet
classification system for veterinary medicinal products. J Vet Pharmacol Ther. 2001;24(2):141-2. doi: 10.1046/j.1365 2885.2001.00315.x.
21. Uppsala Monitoring Centre [Internet]. The Herbal Anatomical Therapeutic Chemical Classification System. [Accessed April 23 2020]. Available from: https://www.who-umc.org/whodrug/whodrugportfolio/whodrug-global/herbal-atc/
22. European Pharmaceutical Marketing Research Association [Internet]. EphMRA Anatomical Classification Guidelines 2021. [Cited 25 April 2021]. Available from: https://www.ephmra.org/media/4973/atc-guidelines-2021-final.pdf
23. European Pharmaceutical Marketing Research Association [Internet]. New Form Code Classification Guidelines-Version 2021. [Cited 25 April 2021]. Available from: https://www.ephmra.org/media/4979/2021-ephmra-nfc-guidelinesversion-2021.pdf
24. American Society of Health-System Pharmacists [Internet]. AHFS Pharmacologic-Therapeutic Classification. [Cited 26 June 2020,]. Available from: https://www.ahfsdruginformation.com/ahfs-pharmacologic-therapeutic-classification
25. Pharmaceutical Care Network Europe Association [Internet]. PCNE Classification for Drug-Related Problems V9.1. 2020. [Cited 2 March 2021]. Available from: https://www.pcne.org/upload/files/417_PCNE_classification_V9-1_final.pdf
26. New Zealand Ministry of Health [Internet]. NZ Medicines Terminology. [Cited 4 August 2020]. Available from: https://view.nzmt.org.nz
27. Kijsanayotin B, Thit WM, Thanapak W, Nareenuch N, Leelakittisin B, Khongmun P, et al. eHealth in Thailand: Interoperability and Health Information Standards: Thai Health Information Standards Development Center; Nonthaburi: Health Systems Research Institute (HSRI); 2016.
28. U.S. Veterans Health Administration [Internet]. Introduction to MED-RT as the Replacement for NDF-RT™. c2018. [Cited 5 April 2020]. Available from: https://evs.nci.nih.gov/ftp1/MED-RT/Introduction%20to%20MED-RT.pdf
29. U.S. Veterans Health Administration [Internet]. Medication Reference Terminology (MED-RT™) Documentation-March 2021 Version. c2021. [Cited 5, April 2021]. Available from: https://evs.nci.nih.gov/ftp1/MED-RT/MED-RT%20Documentation.pdf
30. New Zealand Ministry of Health [Internet]. New Zealand Universal List of Medicines. [Cited 4 August 2020]. Available from: http://info.nzulm.org.nz/
31. Phuksaritanon R, Kijsanayotin B, Theeraroungchaisri A. A medicines terminology governance model for Thailand. Thai Journal of Pharmaceutical Sciences. 2017;41(2):84-92.
32. The Government of the Hong Kong Special Administrative Region [Internet]. Editorial Guide on Hong Kong Clinical Terminology Table– Drugs (Medication Terminology Table). c2018. [Cited 12 August 2020]. Available from: https://www.ehealth.gov.hk/filemanager/content/pdf/en/HKCTT_Drugs_Medication_Terminology_Table.pdf
33. NHS Business Services Authority [Internet]. NHS dictionary of medicines and devices (dm+d) Editorial policy. [Cited 27 May 2020]. Available from: https://www.nhsbsa.nhs.uk/pharmaciesgp-practices-and-appliance-contractors/dictionary-medicines-and-devices-dmd
34. U.S. National Library of Medicine [Internet]. RxNorm Overview. [Cited 1 May 2020]. Available from: https://www.nlm.nih.gov/research/umls/rxnorm/overview.html
35. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109-17. doi:
10.2165/00002018-199920020-00002.
36. Mozzicato P. MedDRA. Pharmaceutical Medicine. 2009;23(2):65-75. doi: 10.1007/BF03256752.
37. Sills JM. World health organization adverse reaction terminology dictionary. Drug Information Journal. 1989;23(2):211-6. doi: 10.1177/009286158902300208.
38. Uppsala Monitoring Centre [Internet]. What is WHO-ART? [Cited 4 August 2020]. Available from: https://www.who-umc.org/vigibase/services/learn-more-about-who-art/
39. U.S. Veterans Health Administration [Internet]. National Drug File – Reference Terminology (NDF-RT™) Documentation. c2015. [Cited 23 August 2020]. Available from: https://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT%20Documentation.pdf
40. U.S. Food and Drug Administration [Internet]. National Drug Code Directory. 2020; [Cited 3 February 2021]. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory
41. European Commission [Internet]. Guide to the Common Procurement Vocabulary (CPV). c2008. [Cited 4 August 2020]. Available from: https://simap.ted.europa.eu/web/simap/cpv
42. Ishida H, Nabeta K, Kimura M, Ohkura M, Tsuchiya F, editors. Therapeutic category improvement method based on the words appearing in effect-efficacy description. International Conference on Human-Computer Interaction; 2011
43. UNSPSC [Internet]. Frequently Asked Questions. [Cited 4 August 2020]. Available from: https://www.unspsc.org/faqs#top
44. World Health Organization. International statistical classification of diseases and related health problems-10th revision. Vol 3.4th ed. Geneva: World Health Organization; 2016.
45. Bodenreider O, Rodriguez LM. Analyzing U.S. prescription lists with RxNorm and the ATC/DDD Index. AMIA Annu Symp Proc. 2014;2014:297-306.
46. U.S. Food and Drug Administration [Internet]. FDA’s Global Substance Registration System: Home of the Unique Ingredient Identifier (UNII).c2019. [Cited 15 November 2020]. Available from: https://www.fda.gov/industry/fdaresources-
data-standards/fdas-global-substanceregistration-system
47. NCI [Internet]. thesaurus-Version: 21.04d. [Cited 29 April 2021]. Available from: https://ncit.nci.nih.gov/ncitbrowser/pages/home.jsf?version=21.04d
48. World Health Organization. 6 and 7. DRUGS, MEDICAMENTS, AND BIOLOGICAL AGENTS. In: International Classification of Procedures in Medicine, Vo. 2. Geneva: World Health Organization; 1978. P. 91-169.
49. NHS Procurement eEnablement Programme [Internet]. NHS-eClass SEARCHABLE DATABASE. [Cited 10 August 2020]. Available from: http://www.nhseclass.nhs.uk
50. Aschman DJ. Snomed(R) CT: The Fit with Classification in Health. Health Inf Manag. 2003;31(1):17-25. doi: 10.1177/183335830303100107.
51. Alecu I, Bousquet C, Mougin F, Jaulent MC. Mapping of the WHO-ART terminology on Snomed CT to improve grouping of related adverse drug reactions. Stud Health Technol Inform. 2006;124:833-8.
52. Dhavle AA, Ward-Charlerie S, Rupp MT, Kilbourne J, Amin VP, Ruiz J. Evaluating the implementation of RxNorm in ambulatory electronic prescriptions. J Am Med Inform Assoc. 2016;23(e1):e99-e107. doi: 10.1093/jamia/ocv131.
53. Dhavle AA, Ward-Charlerie S, Rupp MT, Amin VP, Ruiz J. Analysis of National Drug Code Identifiers in Ambulatory E-Prescribing. J Manag Care Spec Pharm. 2015;21(11):1025-31. doi: 10.18553/jmcp.2015.21.11.1025.
54. Fung KW, Jao CS, Demner-Fushman D. Extracting drug indication information from structured product labels using natural language processing. J Am Med Inform Assoc. 2013;20(3):482-8. doi: 10.1136/amiajnl-2012-001291.
55. Goss FR, Plasek JM, Lau JJ, Seger DL, Chang FY, Zhou L. An evaluation of a natural language processing tool for identifying and encoding allergy information in emergency department clinical notes. AMIA Annu Symp Proc. 2014;2014:580-8.
56. Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 2014;37(10):777-90. doi: 10.1007/s40264-014-0218-z.
57. Therapeutic Goods Administration [Internet]. Prescribing medicines in pregnancy database. c2021. [Cited 29 April 2021]. Available from: https://www.tga.gov.au/prescribing-medicinespregnancy-database#classification
58. Zohar J, Stahl S, Moller HJ, Blier P, Kupfer D, Yamawaki S, et al. A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-based Nomenclature. Eur Neuropsychopharmacol. 2015;25(12):2318-25. doi: 10.1016/j.euroneuro.2015.08.019.
59. Statistics Canada [Internet]. North American Product Classification System (NAPCS) Canada 2017 Version 2.0. c2018. [Cited 10 March 2019]. Available from: https://www.statcan.gc.ca/eng/subjects/standard/napcs/2017v2/index
60. GPC [Internet]. Global Product Classification (GPC) codes used in healthcare. [Cited 2 September 2020]. Available from: https://www.gs1.org/standards/gpc
61. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D82. doi: 10.1093/nar/gkx1037.
62. Statistics Canada [Internet]. Drug Product Database (DPD)-Terminology. [Cited 20 April 2020]. Available from: https://www.canada.ca/en/health-canada/services/drugs-healthproducts/drug-products/drug-product-database/terminology.html
63. Reich C, Ryan PB, Stang PE, Rocca M. Evaluation of alternative standardized terminologies for medical conditions within a network of observational healthcare databases. J Biomed Inform. 2012;45(4):689-96. doi: 10.1016/j.jbi.2012.05.002.
64. U.S. National Library of Medicine [Internet]. UMLS Metathesaurus Vocabulary Documentation. [Cited 28 March 2020]. Available from: https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html