Secure Integration of Electronic Health Data Using Advanced Machine Learning and Blockchain Technology

Document Type : Original Article

Authors

1 Department of Health Information Technology, Sirjan School of Medical Sciences, Sirjan, Iran.

2 Department of Medicine, Sirjan School of Medical Sciences, Sirjan, Iran

3 Department of Occupational Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran.

Abstract

Introduction: Data integration and privacy preservation in electronic health records (EHRs)
remain major challenges. This study combines advanced machine learning and blockchain to
improve integration and security.
Methods: Using a synthetic multicenter EHR dataset (patient records, visits, diagnoses,
medications, observations, procedures), we evaluated an Irregular Fuzzy Cellular Automata
(IFCA) model—which incorporates fuzzy-logic rules—against XGBoost and LightGBM.
Preprocessing included complete anonymization and 98.5% missing-value imputation.
Machine learning addressed data integration, inconsistency resolution, and classification;
HL7-FHIR–like formats and a Hyperledger Fabric consortium blockchain evaluated secure
data exchange and access control. Analyses used Python 3.10 and R 4.2.
Results: Machine learning (data integrity & classification): IFCA achieved 92% accuracy
(F1=0.90, AUC-ROC=0.92), outperforming XGBoost (89%) and LightGBM (90%); ANOVA
indicated statistically significant differences (P<0.05). Blockchain & interoperability (security
& exchange): data-exchange success was 94%, combined privacy/security score 95%, with
92% simulated attack prevention.
Conclusion: The combined approach shows promise for EHR integration and privacy
preservation. Validation on real multisite EHR data is recommended to confirm
generalizability.

Highlights

Mostafa Kashani (Google Scholar)

Asma Zare (Google Scholar)

Keywords

Main Subjects


1. Modi S, Feldman SS. The Value of Electronic Health Records Since the Health Information Technology for Economic and Clinical Health Act: Systematic Review. JMIR Med Inform. 2022;10(9):e37283. doi: 10.2196/37283.
2. Hsu H, Greenwald PW, Laghezza MR, Steel P, Trepp R, Sharma R. Clinical informatics during the COVID-19 pandemic: Lessons learned and implications for emergency department and inpatient operations. J Am Med Inform Assoc. 2021;28(4):879-89. doi: 10.1093/jamia/ocaa311.
3. Ewoh P, Vartiainen T. Vulnerability to Cyberattacks and Sociotechnical Solutions for Health Care Systems: Systematic Review. J Med Internet Res. 2024;26:e46904. doi: 10.2196/46904.
4. Amar F, April A, Abran A. Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review. J Med Internet Res. 2024;26:e45209. doi: 10.2196/45209.
5. Ayaz M, Pasha MF, Alzahrani MY, Budiarto R, Stiawan D. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities. JMIR Med Inform. 2021;9(7):e21929. doi: 10.2196/21929.
6. Fonseca ALA, Barbalho IMP, Fernandes F, Arrais Junior E, Nagem DAP, Cardoso PH, et al. Blockchain in Health Information Systems: A Systematic Review. Int J Environ Res Public Health. 2024;21(11):11512. doi: 10.3390/ijerph21111512.
7. Fang HSA, Tan TH, Tan YFC, Tan CJM. Blockchain Personal Health Records: Systematic Review. J Med Internet Res. 2021;23(4):e25094. doi: 10.2196/25094.
8. Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024;14(2):675. doi: 10.3390/app14020675.
9. Khosravi B, Rouzrokh P, Erickson BJ. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here. J Bone Joint Surg Am. 2022;104(Suppl 3):51-5. doi: 10.2106/JBJS.22.00567.
10. Fisher S, Rosella LC. Priorities for successful use of artificial intelligence by public health organizations: a literature review. BMC Public Health. 2022;22(1):2146. doi: 10.1186/s12889-022-14422-z.
11. Hiwale M, Walambe R, Potdar V, Kotecha K. A systematic review of privacy-preserving methods deployed with blockchain and federated learning for the telemedicine. Healthc Anal (N Y). 2023;3:100192. doi: 10.1016/j.health.2023.100192.
12. Yoon J, Mizrahi M, Ghalaty NF, Jarvinen T, Ravi AS, Brune P, et al. EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records. NPJ Digit Med. 2023;6(1):141. doi: 10.1038/s41746-023-00888-7.
13. Tachinardi U, Grannis SJ, Michael SG, Misquitta L, Dahlin J, Sheikh U, et al. Privacy-preserving record linkage across disparate institutions and datasets to enable a learning health system: The national COVID cohort collaborative (N3C) experience. Learn Health Syst. 2024;8(1):e10404. doi: 10.1002/lrh2.10404.
14. Ettaloui N, Arezki S, Gadi T. Blockchain-Based Electronic Health Record: Systematic Literature Review. Human Behavior and Emerging Technologies. 2024;2024(1):4734288. doi: 10.1155/hbe2/4734288.
15. Kiania K, Jameli SM, Rahmani AM. Blockchain-based privacy and security preserving in electronic health: a systematic review. Multimed Tools Appl. 2023:1-27. doi: 10.1007/s11042-023-14488-w.
16. Wu Z, Wang H, Wan J, Zhang L, Huang J. An inner product predicate-based medical data-sharing and privacy protection system. IEEE Access. 2024;12:68680-96 doi: 10.1109/ACCESS.2024.3400611.
17. Wu G, Wang S, Ning Z, Zhu B. Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-Based Smart Healthcare System. IEEE J Biomed Health Inform. 2022;26(5):1917-27. doi: 10.1109/JBHI.2021.3123643.
18. Al Mamun A, Azam S, Gritti C. Blockchain-based electronic health records management: a comprehensive review and future research direction. IEEE Access. 2022;10:5768-89. doi: 10.1109/access.2022.3141079.
19. Alzubi JA, Alzubi OA, Singh A, Ramachandran M. Cloud-IloT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics. 2022;19(1):1080-7.
20. Jonnagaddala J, Wong ZS. Privacy preserving strategies for electronic health records in the era of large language models. NPJ Digit Med. 2025;8(1):34. doi: 10.1038/s41746-025-01429-0.
21. Stamatellis C, Papadopoulos P, Pitropakis N, Katsikas S, Buchanan WJ. A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric. Sensors (Basel). 2020;20(22):6587. doi: 10.3390/s20226587.
22. Liu J, Fan Y, Sun R, Liu L, Wu C, Mumtaz S. Blockchain-aided privacy-preserving medical data sharing scheme for e-healthcare system. IEEE Internet of Things Journal. 2023;10(24):21377-88. doi: 10.1109/JIOT.2023.3287636.
23. Vanin F, Policarpo LM, Righi RDR, Heck SM, da Silva VF, Goldim J, et al. A Blockchain-Based End-to-End Data Protection Model for Personal Health Records Sharing: A Fully Homomorphic Encryption Approach. Sensors (Basel). 2022;23(1):14. doi: 10.3390/s23010014.
24. Tan L, Yu K, Shi N, Yang C, Wei W, Lu H. Towards secure and privacy-preserving data sharing for COVID-19 medical records: A blockchain-empowered approach. IEEE Transactions on Network Science and Engineering. 2021;9(1):271-81. doi: 10.1109/tnse.2021.3101842.
25. Boyd JH, Thompson S, Schull M, Park AL, Hachey B, Akbari A. Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess? International Journal of Population Data Science. 2024;9(5). doi: 10.23889/ijpds.v9i5.2933.
26. Zaghloul E, Li T, Ren J. d-EMR: Secure and distributed Electronic Medical Record management. High-Confidence Computing. 2023;3(1):100101. doi: 10.1016/j.hcc.2022.100101
27. Ruotsalainen P, Blobel B. Transformed Health Ecosystems-Challenges for Security, Privacy, and Trust. Front Med (Lausanne). 2022;9:827253. doi: 10.3389/fmed.2022.827253.